Skip to content

dsyer/docker-services

Repository files navigation

Under layers: a collection of kustomize templates for running Spring Boot applications. Under compose: a collection of docker-compose.yml files useful for running data services (e.g. redis, rabbit, mongo) locally.

Kustomize Layers

Examples:

$ kustomize build layers/samples/petclinic | kubectl apply -f -

Another one with the source code for the Spring Boot application under demo:

$ cd demo
$ mvn install
$ docker build -t dsyer/demo .
$ kapp deploy -a demo -f $(kustomize build k8s/dev)

See K8s Tutorial for more detail.

Compose Service Templates

To run in a VM or a remote platform you can use docker-machine and an ssh tunnel to map the ports to localhost. E.g. for redis

$ machine=splash # arbitrary name
$ docker create $machine # add options for --driver
$ eval "$(docker-machine env $machine)"
$ (cd redis; docker-compose up)
$ docker-machine ssh $machine -- -L 6379:localhost:6379
# in another terminal:
$ redis-cli
128.0.0.1:6379>

TIP: to break out of an ssh tunnel use Enter ~ . (key sequence).

NOTE: the tunnel is $remoteport:localhost:$localport (the opposite order to docker -p).

To create the machine on EC2 use --driver amazonec2 with

AWS_DEFAULT_REGION=eu-west-1
AWS_SECRET_ACCESS_KEY=...
AWS_ACCESS_KEY_ID=...
AWS_VPC_ID=...

where the VPC id can be copied from AWS Console (it has to be in the region specified and the 'a' availability zone by default).

NOTE: you can automate the tunnel creation with a script, e.g. docker-tunnel $machine 6379 3303.

Tips

Disk full? Clean up:

$ docker system prune -a

More manually:

$ docker volume prune -f
$ docker container prune -f
$ docker image prune -f

or

$ docker rm $(docker ps -a -f status=exited -q)
$ docker rmi $(docker images -f dangling=true -q)
$ docker volume rm $(docker volume ls -f dangling=true -q)

Run as current user:

$ docker run -ti -v ${HOME}:${HOME} -e HOME --user $(id -u):$(id -g) ubuntu /bin/bash
/$ cd
~$

Docker in Docker

$ docker run -v /var/run/docker.sock:/var/run/docker.sock -ti openjdk:8-alpine /bin/sh
/# apk add --no-cache docker
/# docker ps

GKE

Service Accounts

There are 2 kinds of service accounts. It's confusing. One is for k8s and just for the cluster, another is a GCP global thing (so you can use other GCP services from GKE for instance).

It's easy to create a new service account in the k8s cluster, but it won't be very much use until it has some permissions. To grant permissions you need to be an admin yourself, so escalate your own credentials first

kubectl --username=admin --password=$PASSWORD create clusterrolebinding dsyer-cluster-admin-binding --clusterrole=cluster-admin [email protected]

(You can copy the password from the GKE dashboard if you go to the cluster details and click on the "Show credentials" link on the k8s endpoint.)

Then apply some YAML that creates the service account and a role and binds them together (this example uses "builder" as the user name and the role name):

$ kubectl apply -f serviceaccount.yaml
$ cat serviceaccount.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
  name: builder
---

kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: builder
rules:
  - apiGroups: [""]
    resources: ["services", "pods"]
    verbs: ["get", "list", "watch", "create", "delete", "update", "patch"]
  - apiGroups: ["extensions"]
    resources: ["deployments", "replicasets"]
    verbs: ["get", "list", "watch", "create", "delete", "update", "patch"]
  - apiGroups: ["projectriff.io"]
    resources: ["functions", "topics"]
    verbs: ["get", "list", "watch", "create", "delete", "update", "patch"]
---

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: builder
roleRef:
  kind: Role
  name: builder
  apiGroup: rbac.authorization.k8s.io
subjects:
- kind: ServiceAccount
  name: builder

A pod runs containers with permissions from a service account. By default it is called "default", but you can change that in the deployment (or pod) spec:

$ kubectl get deployment builder -o yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  labels:
    function: builder
  name: builder
spec:
  replicas: 1
  selector:
    matchLabels:
      function: builder
  template:
    metadata:
      labels:
        function: builder
      name: builder
    spec:
      containers:
      - image: dsyer/builder:0.0.1
        name: main
        volumeMounts:
        - mountPath: /var/run/docker.sock
          name: docker-sock-volume
      # ...
      serviceAccountName: builder
      volumes:
      - hostPath:
          path: /var/run/docker.sock
          type: File
        name: docker-sock-volume
---

apiVersion : projectriff.io/v1
kind: Topic
metadata:	
  name: builds

Single Node No Registry

If you create a cluster for a smallish system just for development, you can make it a single node (like a minikube), and then you don't need a Docker registry for deployments. Useful article on this pattern. Remember to create the cluster with more resources (e.g. 4 cores) if you have more than a few pods running in the final state.

Create a tunnel:

$ gcloud compute ssh $(kubectl get nodes -o=custom-columns=:metadata.name) -- -N -o StreamLocalBindUnlink=yes -L $HOME/gke.sock:/var/run/docker.sock 

and then:

$ export DOCKER_HOST=unix:///$HOME/gke.sock
$ docker build -t dsyer/demo:0.0.1 .
$ kubectl run --image=dsyer/demo demo --port=8080

Even nicer, you can run docker in a container (either locally or in GKE), and point to that socket. Locally, when you don't already have DOCKER_HOST set as above:

$ docker run -v /var/run/docker.sock:$HOME/gke.sock -ti dsyer/builder:0.0.1 /bin/sh

If you already have DOCKER_HOST then this works:

$ docker run -v /var/run/docker.sock:/var/run/docker.sock -ti dsyer/builder:0.0.1 /bin/sh

The images will not be usable by k8s (even if you can run them with docker) unless they have a "concrte" label, like "0.0.1" (not "latest"). Easy mistake to make, results in a load of ImagePullBackoff.

Private Registry

Articles on private Docker registry in GKE:

From the Heptio docs:

# create a GCP service account; format of account is email address
SA_EMAIL=$(gcloud iam service-accounts --format='value(email)' create k8s-gcr-auth-ro)
# create the json key file and associate it with the service account
gcloud iam service-accounts keys create k8s-gcr-auth-ro.json --iam-account=$SA_EMAIL
# get the project id
PROJECT=$(gcloud config list core/project --format='value(core.project)')
# add the IAM policy binding for the defined project and service account
gcloud projects add-iam-policy-binding $PROJECT --member serviceAccount:$SA_EMAIL --role roles/storage.objectViewer

Then create the secret and specify the file that you just created:

SECRETNAME=varSecretName

kubectl create secret docker-registry $SECRETNAME \
  --docker-server=https://gcr.io \
  --docker-username=_json_key \
  [email protected] \
  --docker-password="$(cat k8s-gcr-auth-ro.json)"

where the values must be as follows:

  • $SECRETNAME An arbitrary string to serve as the name of the secret
  • docker-server Must be set to “https://gcr.io” (or some variant, a subdomain may be required depending on your availability zone)
  • docker-username Must be set to _json_key
  • docker-email Must be any well-formed email address (not used, but required)
  • docker-password The contents of the json key file that you created in the previous script

NOTE: The command above only creates the secret in the default namespace. You will need to specify -n and create a secret for each namespace that your pods are in, because pods can only reference the image pull secrets in their own namespace.

You can now add the secret to your Kubernetes configuration. You can add it to the default service account with the following command:

SECRETNAME=varSecretName
kubectl patch serviceaccount default \
  -p "{\"imagePullSecrets\": [{\"name\": \"$SECRETNAME\"}]}"

If you work with only the default service account, then all pods in the namespace pull images from the private registry. This is the case whether or not you explicitly specify the service account in the pod spec. If you work with multiple service accounts, each service account must provide the appropriate imagePullSecrets value. For more information, see the Kubernetes documentation on service accounts.

Google Container Registry

Every project has a private registry, and the GKE cluster has access to it by default. It is located at gcr.io and the image tag format to use is gcr.io/<project-name>/<tag>. You can extract the project name using gcloud:

$ export GCP_PROJECT=`gcloud config list --format 'value(core.project)'`
$ docker build -t gcr.io/$GCP_PROJECT/demo .
$ gcloud docker -- push gcr.io/$GCP_PROJECT/demo

If you write your k8s YAML by hand it would still need to have the project id hard-coded in it, so it might be better to use a tool to generate or manage the deployments. Example a simple client-side template engine, or just UNIX stuff, e.g.

$ eval "echo \"$(cat encode.yaml)\"" | kubectl apply -f -

Images in the project registry can be managed (and deleted) in the GCP console, or via APIs.

Using GCR From Vanilla Docker

Instead of gcloud docker ... (which I always forget to do) you can use a utility called docker-credential-gcr to set up the docker environment to just send docker push to GCR automatically:

$ curl -L https://github.com/GoogleCloudPlatform/docker-credential-gcr/releases/download/v1.4.3/docker-credential-gcr_linux_amd64-1.4.3.tar.gz | (cd ~/bin; tar -zxvf -)
$ docker-credential-gcr configure-docker
$ docker push gcr.io/$GCP_PROJECT/demo

This last step actually installs "credHelpers" in your ~/.docker/config.json (son it's permanent). It also slows down all docker builds (sigh) - see GoogleCloudPlatform/docker-credential-gcr#11. You can speed it up a bit by pruning the "credHelpers" to just gcr.io.

Service Discovery and DNS in Kubernetes

$ kubectl run -it --restart=Never --image=ubuntu:bionic shell /bin/bash
/# cat /etc/resolv.conf
search default.svc.cluster.local svc.cluster.local cluster.local
nameserver 10.96.0.10
options ndots:5

Shows that the local domain name is default.svc.cluster.local (where "default" is the namespace name). Services can be resolved as <service>.<namespace>.svc.cluster.local.

One liner:

$ kubectl run -ti --image=alpine --restart=Never shell cat /etc/resolv.conf | grep search | cut -d ' ' -f 3
svc.cluster.local
$ kubectl delete pod shell --force

or from an existing pod

$ kubectl exec -ti demo-6c9dd5dbf9-kwv54 cat /etc/resolv.conf | grep search | cut -d ' ' -f 3
svc.cluster.local

Curl

$ kubectl run -it --image=tutum/curl client --restart=Never
root@client:/# curl -v ...

in istio:

$ kubectl run -it --image=tutum/curl client --restart=Never --overrides='{"apiVersion": "v1", "metadata":{"annotations": {"sidecar.istio.io/inject": "true"}}}'
root@client:/# curl -v tick-channel.default.svc.cluster.local -d foo -H "Content-Type: text/plain"

(possibly add "traffic.sidecar.istio.io/includeOutboundIPRanges": "*" as well, but it doesn't seem to need it). It's hard to kill it. You have to kubectl delete pod client --force --grace-period=0.

Isolated Networks

Create an isolated network:

$ docker network create --driver=bridge --internal=true isolated
$ docker run --net=isolated -it tutum/curl
# curl google.com
 ... times out

Run a Maven build in an isolated container:

$ docker run --net=isolated -v `pwd`:/app -w /app -it openjdk:8-jdk-alpine /bin/sh
# ./mvnw package

(fails after a very long timeout).

Set up a nexus mirror and connect it to the isolated network:

$ docker run --name nexus -p 8081:8081 sonatype/nexus3
$ docker network connect isolated nexus

and point the Maven build at the mirror:

# sed -i -e 's,https://repo1.maven.org/maven2,http://nexus:8081/repository/maven-central,' .mvn/wrapper/maven-wrapper.properties
# mkdir -p ~/.m2
# cat > ~/.m2/settings.xml
<settings 
    xmlns="http://maven.apache.org/SETTINGS/1.0.0" 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 http://maven.apache.org/xsd/settings-1.0.0.xsd">
    <mirrors>
        <mirror>
            <id>nexus</id>
            <mirrorOf>*</mirrorOf>
            <name>Local Nexus Sonatype  Repository Mirror</name>
            <url>http://nexus:8081/repository/maven-central/</url>
        </mirror>
    </mirrors>
</settings>
# ./mvnw package

Works!

Multistage Build

# syntax=docker/dockerfile:experimental
FROM openjdk:8-alpine as build
VOLUME /root/.m2
COPY pom.xml /app/pom.xml
COPY src /app/src
COPY .mvn /app/.mvn
COPY mvnw /app/mvnw
WORKDIR /app
RUN --mount=type=cache,target=/root/.m2 ./mvnw clean install

FROM openjdk:8-alpine
VOLUME /tmp
COPY --from=build /app/target/dependency/BOOT-INF/lib /app/lib
COPY --from=build /app/target/dependency/META-INF /app/META-INF
COPY --from=build /app/target/dependency/BOOT-INF/classes /app
ENTRYPOINT ["java","-Xmx128m","-Djava.security.egd=file:/dev/./urandom","-XX:TieredStopAtLevel=1","-noverify","-cp","app:app/lib/*","com.example.demo.Uppercase"]

The cache only works with buildkit.

Quick Bootstrap Kubernetes Service

Create container and deployment:

$ docker build -t gcr.io/cf-sandbox-dsyer/demo .
$ mkdir k8s
$ kubectl create deployment demo --image=gcr.io/cf-sandbox-dsyer/demo --dry-run -o=yaml > k8s/deployment.yaml
$ echo --- >> k8s/deployment.yaml
$ kubectl create service clusterip demo --tcp=8080:80 --dry-run -o=yaml >> k8s/deployment.yaml
... edit YAML to taste
$ kubectl apply -f k8s/deployment.yaml
$ kubectl port-forward svc/demo 80:8080
$ curl localhost:8080
Hello World!

Kubernetes API Access

https://medium.com/@nieldw/curling-the-kubernetes-api-server-d7675cfc398c

$ SERVICE_ACCOUNT=default
$ SECRET=$(kubectl get serviceaccount ${SERVICE_ACCOUNT} -o json | jq -Mr '.secrets[].name | select(contains("token"))')
$ TOKEN=$(kubectl get secret ${SECRET} -o json | jq -Mr '.data.token' | base64 -d)
$ kubectl get secret ${SECRET} -o json | jq -Mr '.data["ca.crt"]' | base64 -d > /tmp/ca.crt
$ APISERVER=https://$(kubectl -n default get endpoints kubernetes --no-headers | awk '{ print $2 }')
curl -s $APISERVER/openapi/v2  --header "Authorization: Bearer $TOKEN" --cacert /tmp/ca.crt | tee /tmp/k8s.json

or just use kubectl get --raw ...:

$ kubectl get --raw /openapi/v2 | tee /tmp/k8s.json

Quick and Dirty Ingress

Simple port forwarding for localhost:

$ kubectl create service clusterip demo --tcp=8080:8080
$ kubectl port-forward svc/demo 8080:8080
$ curl localhost:8080
Hello World!

Public ingress via ngrok:

$ kubectl run --restart=Never -t -i --rm ngrok --image=gcr.io/kuar-demo/ngrok -- http demo:8080

ngrok starts and announces a public http and https service that connects to your "demo" service.

Using NodePort Services in Kind

NOTE: It's easier TBH to just use ClusterIP and kubectl port-forward to connect to a service in a kind cluster.

Kind only exposes one port in the cluster to the host machine (the kubernetes API). If you deploy a service in the cluster with type: NodePort it will not be accessible unless you tunnel to it. You can do that with alpine/socat:

$ kubectl get service dev-app
NAME                 TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE
service/dev-app      NodePort    10.97.254.57     <none>        8080:31672/TCP   22m

$ docker run -p 127.0.0.1:8080:80 --link kind-control-plane:target alpine/socat tcp-listen:80,fork,reuseaddr tcp-connect:target:31672

The service is now available on the host on port 8080. You can extract that ephemeral port using kubectl:

$ kubectl get service dev-app -o=jsonpath="{.spec.ports[?(@.port == 8080)].nodePort}"
31672

Exposing a Port in a Running Container

https://stackoverflow.com/a/49165016/1259109

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published