A powerful MDX-based database that treats MDX documents as collections, with built-in support for JSON-LD, vector search, and multiple storage backends.
- 📝 MDX-Native: Built on top of @mdx.do/mdx for first-class MDX support
- 🔍 Vector Search: Built-in support for semantic search using embeddings
- 🌐 JSON-LD: Native support for linked data through JSON-LD conventions
- 🔄 Multiple Backends: Support for both filesystem and HTTP/API backends
- 🎯 Type-Safe: Written in TypeScript with comprehensive type definitions
- ⚡ Async/Await: Modern Promise-based API
- 🔒 Error Handling: Comprehensive error handling with detailed error types
- 📊 Debugging: Built-in logging and debugging support
npm install @mdx.do/db
import { db } from '@mdx.do/db'
// Create a collection
const posts = db('https://example.com/posts')
// Create a document
const post = await posts.create({
mdx: '# Hello World\nThis is my first post!',
data: {
title: 'Hello World',
published: true
}
})
// Search documents
const results = await posts.search('hello')
// Query with filters
const published = await posts.find({ published: true })
// Vector search
const similar = await posts.semanticSearch('concept', {
k: 5,
threshold: 0.7
})
MDXDB_URL
: Default base URL for collectionsMDXDB_TOKEN
: API authentication token
import { createDatabase } from '@mdx.do/db'
const db = createDatabase({
base: 'https://example.com',
apiKey: 'your-api-key',
// For filesystem provider
basePath: '/path/to/data'
})
The main database function creates and manages collections:
// Using URL
const posts = db('https://example.com/posts')
// Using proxy syntax
const posts = db.posts
// Custom configuration
const posts = db('https://example.com/posts', {
apiKey: 'custom-key'
})
Collections provide CRUD operations and querying capabilities:
// Get a document
const doc = await collection.get('doc-id')
// Create a document
const doc = await collection.create({
mdx: '# New Document',
data: { title: 'New' }
})
// Update a document
const updated = await collection.update('doc-id', {
data: { published: true }
})
// Delete a document
await collection.delete('doc-id')
// List all documents
const docs = await collection.list()
// Search by text
const results = await collection.search('query')
// Filter documents
const published = await collection.find({ published: true })
// Namespace search
const allDocs = await collection.namespace()
Built-in support for semantic search using embeddings:
// Search using vector
const results = await collection.vectorSearch({
vector: [0.1, 0.2, ...],
k: 10,
threshold: 0.8
})
// Semantic search using text
const similar = await collection.semanticSearch('concept', {
k: 5,
threshold: 0.7
})
Documents follow JSON-LD conventions and include MDX capabilities:
interface Document {
// JSON-LD metadata
id: string
context: string | Record<string, any>
type?: string
// MDX content
mdx: string
data: Record<string, any>
// React components
default: ComponentType<any>
markdown: ComponentType<any>
// Operations
merge(update: Record<string, any>): Promise<Document>
append(content: string): Promise<Document>
}
import { db } from '@mdx.do/db/fs'
const posts = db('file:///posts', {
basePath: '/path/to/data'
})
import { db } from '@mdx.do/db'
const posts = db('https://example.com/posts', {
apiKey: 'your-api-key',
apiURI: uri => `${uri}.json` // Custom API endpoint
})
The library provides detailed error types for better error handling:
try {
await collection.get('non-existent')
} catch (error) {
if (error instanceof DocumentNotFoundError) {
console.log('Document not found:', error.message)
} else if (error instanceof ValidationError) {
console.log('Validation failed:', error.message)
}
}
Enable debug logging by setting the DEBUG environment variable:
# Enable all debug logs
DEBUG=mdxdb:* npm test
# Enable specific components
DEBUG=mdxdb:fs:*,mdxdb:vector:* npm test
# Install dependencies
npm install
# Run tests
npm test
# Run tests with debug output
npm run debug
# Run tests with coverage
npm run test:coverage
MIT © MDX.do