Skip to content

Pulmonary Edema Classification using Lung Segmentation | JKIICE Acceptance Paper | OMS 1

Notifications You must be signed in to change notification settings

drawcodeboy/U-Net-Based-CHF-Pul.Edema-Diagnostic-Model

Repository files navigation

Exploring Diagnostic Methodology for Pulmonary Edema Diagnosis in Patients with Congestive Heart Failure Using U-Net Based Architecture

U-Net ๊ธฐ๋ฐ˜ ์•„ํ‚คํ…์ฒ˜๋ฅผ ํ™œ์šฉํ•œ ์šธํ˜ˆ์„ฑ ์‹ฌ๋ถ€์ „ ํ™˜์ž ํ๋ถ€์ข… ์ง„๋‹จ ๋ฐฉ๋ฒ•๋ก  ์—ฐ๊ตฌ

๐Ÿ“ Paper & Description

๐Ÿ“Œ Paper Link

๐Ÿ“Œ Doby's Lab (Blog Description)

๐Ÿ“ Dataset

  1. MIMIC-CXR-JPG - chest radiographs with structured labels
  2. Chest X-ray Dataset with Lung Segmentation v1.0.0
  3. Pulmonary Edema Severity Grades Based on MIMIC-CXR v1.0.1

๐Ÿ’ก Research IDEA and GOAL

  • ๋ณธ ์—ฐ๊ตฌ์˜ ์•„์ด๋””์–ด ๊ธฐ๋ฐ˜์ด ๋˜์—ˆ๋˜ ๋‡Œ์ข…์–‘์„ Segmentationํ•˜๋Š” ์—ฐ๊ตฌ, TSTBS์—์„œ๋Š” ์˜๋ฃŒ์ง„์˜ ์ง„๋‹จ ๊ณผ์ •์— ์ฐฉ์•ˆํ•˜์—ฌ ์•„ํ‚คํ…์ฒ˜๋ฅผ ๊ตฌ์„ฑํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ด์— ๋”ฐ๋ผ Chest X-ray๋ฅผ ํ†ตํ•ด Congestive Heart Failure(์šธํ˜ˆ์„ฑ ์‹ฌ๋ถ€์ „) ํ™˜์ž๋“ค์˜ Pulmonary Edema(ํ๋ถ€์ข…) ์ง„๋‹จ์„ ํ•  ๋•Œ, ์˜๋ฃŒ์ง„์˜ ์ง„๋‹จ ๊ณผ์ •์— ์ฐฉ์•ˆํ•˜์—ฌ ํ ์˜์—ญ์— ๋Œ€ํ•œ ์ง‘์ค‘๋„๋ฅผ ๋†’์ด๊ณ ์ž Semantic Segmentation์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
  • ๋ถ„ํ• ๋œ ํ ์˜์—ญ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๋ถ„๋ฅ˜ ์‹คํ—˜ 3๊ฐ€์ง€์™€ ๊ทธ๋ ‡์ง€ ์•Š์€ ๋ถ„๋ฅ˜ ์‹คํ—˜ 2๊ฐ€์ง€๋ฅผ ์ง„ํ–‰ํ•˜์—ฌ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ, ํ ์˜์—ญ์— ๋Œ€ํ•ด ๊ณ ๋ คํ•œ ์‹คํ—˜์ด ์„ฑ๋Šฅ์ด ๋” ์šฐ์ˆ˜ํ•˜๋‹ค๋Š” ์‚ฌ์‹ค์„ ์•Œ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

๐Ÿ’ป Summary using Streamlit

streamlit์„ ํ†ตํ•ด ๊ตฌํ˜„ํ•œ ์›น์œผ๋กœ ํ”„๋กœ์ ํŠธ์˜ ์ „๋ฐ˜์ ์ธ ํ”„๋กœ์„ธ์Šค๋ฅผ ์š”์•ฝํ•ฉ๋‹ˆ๋‹ค.

streamlit_gif

1๏ธโƒฃ Segmentation Task

  • Lung Segementation์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฐ€์žฅ ์ ํ•ฉํ•œ ๋ชจ๋ธ์„ ์ฐพ๊ธฐ ์œ„ํ•ด U-Net, SA U-Net, U-Net++ ์•„ํ‚คํ…์ฒ˜๋ฅผ ํ•™์Šตํ•˜์—ฌ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€์Šต๋‹ˆ๋‹ค.
  • Segmentation Task์˜ ๊ฒฝ์šฐ์—๋Š” PyTorch์˜ ํ™œ์šฉ๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•ด์„œ ์„ธ ์•„ํ‚คํ…์ฒ˜ ๋ชจ๋‘ ์ง์ ‘ ๊ตฌํ˜„ํ•˜์—ฌ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค.

๐Ÿ“„ U-Net based Architectures Repositories

  1. U-Net Implementation Repository
  2. SA U-Net Implementation Repository
  3. U-Net++ Implementation Repositiory

๐Ÿ“„ Train Setting

  • Loss function์€ Semantic segmentation์—์„œ ๋ณดํŽธ์ ์œผ๋กœ ์“ฐ์ด๋Š” Dice Loss๋ฅผ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค. $$DiceLoss = \frac{2\times(|A|\cap|B|)}{|A|+|B|}$$
  • ์ข…ํ•ฉ์ ์ธ ํ•™์Šต ์ŠคํŽ™์€ ๋ชจ๋‘ ๋™์ผํ•˜๊ฒŒ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.
Loss function Opimizer Learning rate Decay step Decay rate Activation Epochs
Dice Loss Adam 1e-4 5 0.1 Sigmoid 50

๐Ÿ“„ Performance Table

  • ์œ„์™€ ๊ฐ™์€ ์„ธํŒ…์„ ํ†ตํ•ด ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
  • SA U-Net์€ DropBlock์˜ ์‚ฌ์ด์ฆˆ์— ๋”ฐ๋ผ 2๊ฐœ์˜ ํ•™์Šต์„ ์ง„ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค.
    • DropBlock 10% - ์ „์ฒด ์ด๋ฏธ์ง€์˜ 10%๋ฅผ Drop
    • DropBlock 10% - ์ „์ฒด ์ด๋ฏธ์ง€์˜ 10%๋ฅผ Drop
  • U-Net++๋Š” 2๊ฐ€์ง€ Mode์— ๋”ฐ๋ผ ํ•™์Šต์„ ์ง„ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค.
    • Fast mode
    • Accurate mode
Model Accuracy F1-Score AUC MCC
U-Net 94.67% 0.9808 0.9749 0.9729
SA U-Net (10%) 93.98% 0.9684 0.9695 0.9554
SA U-Net (20%) 93.85% 0.9660 0.9613 0.9521
U-Net++ (fast) 94.60% 0.9795 0.9720 0.9711
U-Net++ (accurate) 94.59% 0.9793 0.9722 0.9708

โœ… Result

  • ํ•™์Šต ๊ฒฐ๊ณผ Segmentation Task์—์„œ๋Š” U-Net์„ ์‚ฌ์šฉํ•˜๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

2๏ธโƒฃ 5 Data Processing Methods

๋ณธ ๋‹จ๋ฝ์—์„œ๋Š” Segmentation Task ์ดํ›„์— ์–ป์€ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ 3๊ฐ€์ง€ Method์™€ ๊ทธ๋ ‡์ง€ ์•Š์€ 2๊ฐ€์ง€ Method๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค.

methods_figure

๐Ÿฉบ Experient 1

  • ์›๋ณธ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด์„œ๋Š” ๊ฐ€์šฐ์‹œ์•ˆ ํ•„ํ„ฐ๋ง(Gaussian Filtering)์„ ์ ์šฉํ•˜๊ณ , ํ ์˜์—ญ ์ด๋ฏธ์ง€์™€ ๋ธ”๋žœ๋”ฉ์„ ํ•˜๋Š” Method์ž…๋‹ˆ๋‹ค.
  • ๊ฐ€์šฐ์‹œ์•ˆ ํ•„ํ„ฐ๋ง์€ ๋น„์ „ ๋ถ„์•ผ์—์„œ ๋…ธ์ด์ฆˆ ์ œ๊ฑฐ ํšจ๊ณผ๋ฅผ ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ์— ๋”ฐ๋ผ ์ค‘์‹ฌ ํ”ฝ์…€๋กœ๋ถ€ํ„ฐ ๋ฉ€์–ด์งˆ์ˆ˜๋ก ๊ฐ€์ค‘์น˜๋ฅผ ์ ๊ฒŒ์ฃผ๋Š” ์—ญํ• ์„ ํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค. $$G(x,y)=\frac{1}{2\pi\sigma}e^{-\frac{x^2+y^2}{2\sigma^2}}$$
  • ์ด๋ฏธ์ง€ ๋ธ”๋žœ๋”ฉ(Image Blending)์€ ๋‘ ์ด๋ฏธ์ง€๋ฅผ ์„œ๋กœ ํ•ฉ์น  ๋•Œ, ๊ฐ€์ค‘์น˜๋ฅผ ํ†ตํ•ด ํ•ฉ์น˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค. $$g(x)=(1-\alpha)f_1(x)+\alpha f_2(x)$$
  • ํ•ด๋‹น Method๋ฅผ ์ ์šฉํ•œ figure๋Š” 1๋ฒˆ์งธ์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

๐Ÿฉบ Experiment 2

  • Experiment 1๊ณผ ๊ฐ™์ด ์›๋ณธ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด์„œ ๊ฐ€์šฐ์‹œ์•ˆ ํ•„ํ„ฐ๋ง์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ, ์—ฌ๊ธฐ์„œ ํ ์˜์—ญ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด์„œ ์ œ๊ฑฐํ•ฉ๋‹ˆ๋‹ค.
  • ๊ทธ๋ฆฌ๊ณ , ํ ์˜์—ญ ์ด๋ฏธ์ง€๋ฅผ ํ•ฉ์ณ์„œ ๊ฒฐ๊ณผ์ ์œผ๋กœ ํ ์˜์—ญ์„ ์ œ์™ธํ•œ ์›๋ณธ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด์„œ๋งŒ ๊ฐ€์šฐ์‹œ์•ˆ ํ•„ํ„ฐ๋ง์ด ์ ์šฉ๋œ ์ด๋ฏธ์ง€๋ฅผ ์‚ฌ์šฉํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
  • ํ•ด๋‹น Method๋ฅผ ์ ์šฉํ•œ figure๋Š” 2๋ฒˆ์งธ์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

๐Ÿฉบ Experiment 3

  • ํ•ด๋‹น ์‹คํ—˜์—์„œ๋Š” ํ ์˜์—ญ ์ด๋ฏธ์ง€๋งŒ์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
  • ํ•ด๋‹น Method๋ฅผ ์ ์šฉํ•œ figure๋Š” 3๋ฒˆ์งธ์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

๐Ÿฉบ Experiment 4

  • ์›๋ณธ ์ด๋ฏธ์ง€๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ, figure๋Š” 4๋ฒˆ์งธ์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

๐Ÿฉบ Experiment 5

  • ์›๋ณธ ์ด๋ฏธ์ง€์— ๊ฐ€์šฐ์‹œ์•ˆ ํ•„ํ„ฐ๋ง์„ ์ ์šฉํ•˜๋ฉฐ, figure๋Š” 5๋ฒˆ์งธ์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

3๏ธโƒฃ Classification Task

  • Classification Task๋ฅผ ์œ„ํ•ด์„œ๋Š” ๋‘ ๊ฐ€์ง€ ๋ชจ๋ธ์„ ํ†ตํ•ด 5๊ฐ€์ง€์˜ ์‹คํ—˜์„ ์ง„ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค.
  • ์‚ฌ์šฉ๋œ ๋‘ ๋ชจ๋ธ์€ ๊ฐ DenseNet121, VGG16์ž…๋‹ˆ๋‹ค.
  • DenseNet121์€ ๋” ๊นŠ์€ ๋ชจ๋ธ์˜ ์—ญํ• ์„ ํ•˜๊ธฐ ์œ„ํ•ด ImageNet-1K๋ฅผ pre-trainํ•œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜๋ฉฐ, ๋ชจ๋“  ๋ ˆ์ด์–ด์— ๋Œ€ํ•ด์„œ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ํ–ˆ์Šต๋‹ˆ๋‹ค.
  • VGG16์€ ๋” ์–•์€ ๋ชจ๋ธ์˜ ์—ญํ• ์„ ํ•˜๊ธฐ ์œ„ํ•ด ImageNet-1K๋ฅผ pre-trainํ•œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์˜€์œผ๋‚˜ pre-train๋œ ๋ ˆ์ด์–ด์— ๋Œ€ํ•ด์„œ๋Š” Model freezing์„ ์‹œํ‚จ ์ƒํƒœ๋กœ ์ง„ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค.
  • ์ด๋Ÿฌํ•œ 2๊ฐ€์ง€ ๋ฒ„์ „์˜ ๋ชจ๋ธ์„ ํ†ตํ•ด Method์˜ ์ผ๋ฐ˜ํ™”๋ฅผ ๋„์ถœํ•˜์˜€์Šต๋‹ˆ๋‹ค.

๐Ÿ“„ Imbalanced Data

  • ํ”„๋กœ์ ํŠธ๋ฅผ ์œ„ํ•ด ์ถ”์ถœํ•œ ๋ฐ์ดํ„ฐ์…‹์—๋Š” ์ •์ƒ๊ณผ ํ๋ถ€์ข…์— ๋Œ€ํ•œ ๋น„์œจ์ด ๋ถˆ๊ท ํ˜•ํ•ฉ๋‹ˆ๋‹ค.
  • ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ ํ•ด๋‹น ์‹คํ—˜์—๋Š” Weighted binary cross-entropy function์„ Loss function์œผ๋กœ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. $$L(y,\hat y)=-\frac{1}{N}\sum_{i=1}^{N}w_i[y_i\log(\hat y_i) + (1-y_i)\log(1-\hat y_i)]$$

๐Ÿ“„ Train Setting

  • DenseNet121๊ณผ VGG16์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์—ญํ• ์„ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ•™์Šต์„ ์ง„ํ–‰ํ•˜๋Š” ๊ณผ์ •์—์„œ๋„ ํŠน์ • ๋ถ€๋ถ„๋“ค์ด ๋‹ค๋ฆ…๋‹ˆ๋‹ค.
  • ํ•™์Šต ์ŠคํŽ™์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.
Model Image size Loss function Opimizer Learning rate Decay step Decay rate Activation Epochs
DenseNet121 224x224 Weighted binary cross-entropy Adam 1e-4 5 0.1 Sigmoid 100
VGG16 64x64 Weighted binary cross-entropy Adam 1e-4 5 0.1 Sigmoid 30

๐Ÿ“„ Performance Table

Model Experiment Accuracy F1-Score AUC Sensitivity Specificity
DenseNet121 1 75.00% 0.7965 0.8090 0.8204 0.6460
DenseNet121 2 73.93% 0.7932 0.7951 0.8383 0.5929
DenseNet121 3 73.45% 0.7890 0.7936 0.8323 0.5900
DenseNet121 4 73.57% 0.7815 0.7901 0.7924 0.6519
DenseNet121 5 74.05% 0.7846 0.7948 0.7924 0.6637
VGG16 1 63.81% 0.7164 0.6628 0.7665 0.4484
VGG16 2 63.45% 0.7369 0.6570 0.8583 0.3038
VGG16 3 64.52% 0.7545 0.6659 0.8483 0.3451
VGG16 4 62.38% 0.6715 0.6681 0.6657 0.5929
VGG16 5 61.90% 0.7320 0.6501 0.8723 0.2448

๐Ÿ”ถ Result

  • ์ „๋ฐ˜์ ์œผ๋กœ Experiment 1์ด ์›๋ณธ ์ด๋ฏธ์ง€๋ฅผ ํ™œ์šฉํ•œ Experiment 4, 5๋ณด๋‹ค ์„ฑ๋Šฅ์„ ์šฐ์ˆ˜ํ•จ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.

4๏ธโƒฃ Optimize parameters in [Experiment 1]

  • ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•(Experiment 1)์ด ํšจ๊ณผ์ ์ด์—ˆ์Œ์„ ์ž…์ฆํ•˜์˜€๊ณ , ์ด๋ฅผ ํ† ๋Œ€๋กœ Gaussian Filtering๊ณผ Blending์˜ ๊ฐ’์„ ์กฐ์ ˆํ•˜์—ฌ ํ ์˜์—ญ์— ๋Œ€ํ•œ ๊ธฐ์—ฌ๋„๋ฅผ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค.
  • ๊ธฐ์กด Experiment 1 ๋Œ€๋น„ ๊ธฐ์—ฌ๋„๋ฅผ '์•ฝํ•˜๊ฒŒ ์ฃผ์—ˆ์„ ๋•Œ', '๊ฐ•ํ•˜๊ฒŒ ์ฃผ์—ˆ์„ ๋•Œ'๋กœ ๋‚˜๋ˆ„์–ด ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
  • ์‹คํ—˜ ๊ฒฐ๊ณผ, ํ ์˜์—ญ์— ๋Œ€ํ•œ ๊ธฐ์—ฌ๋„๊ฐ€ ๋‚ฎ์„์ˆ˜๋ก ์„ฑ๋Šฅ์ด ์˜ฌ๋ผ๊ฐ€๋Š” ๊ฒƒ์„ ์ž…์ฆํ–ˆ์Šต๋‹ˆ๋‹ค.

๐Ÿ”ถ Result

Experiment 1 Gaussian Filtering - $\sigma$ Blending - $\alpha$ Accuracy F1-Score AUC
Weak 0.5 0.1 75.12% 0.7969 0.8058
Default 1.0 0.2 75.00% 0.7965 0.8090
Strong 1.5 0.3 74.05% 0.7776 0.8001

๐Ÿ“š Conclusion

  • ํ•ด๋‹น ํ”„๋กœ์ ํŠธ์—์„œ๋Š” U-Net ๊ธฐ๋ฐ˜ ์•„ํ‚คํ…์ฒ˜๋ฅผ ํ†ตํ•ด ํ ์˜์—ญ์„ ์ถ”์ถœํ•œ ์ด๋ฏธ์ง€๋ฅผ ์›๋ณธ ์ด๋ฏธ์ง€์™€ ๊ฒฐํ•ฉํ•˜๋Š” method๋“ค์„ ๊ณ ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค.
  • ์ œ์•ˆํ•œ method๋“ค์„ ์‚ฌ์šฉํ•˜์—ฌ ์ •์ƒ๊ณผ ํ๋ถ€์ข…์„ ๋ถ„๋ฅ˜ํ•˜๊ธฐ ์œ„ํ•ด DenseNet121๊ณผ VGG16 ์‚ฌ์šฉํ•ด ๋น„๊ต๋ฅผ ์ง„ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค.
  • Experiment 1์—์„œ 75.00%, 63.81%์˜ Accuracy๋กœ Experiment 5์—์„œ 74.05%, 61.90%์˜ Accuarcy๋ณด๋‹ค ์„ฑ๋Šฅ์ด ์šฐ์ˆ˜ํ•จ์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค.
  • ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ Experiment 1์— ๋Œ€ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ตœ์ ํ™”ํ•˜์—ฌ, ํ ์˜์—ญ์— ๋Œ€ํ•œ ๊ธฐ์—ฌ๋„๊ฐ€ ๋‚ฎ์„ ์ˆ˜๋ก ์„ฑ๋Šฅ์ด ์˜ฌ๋ผ๊ฐ€๋Š” ๊ฒƒ์„ ์ž…์ฆํ–ˆ์Šต๋‹ˆ๋‹ค.
  • ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด์„œ ํ๋ถ€์ข…์„ ์ง„๋‹จํ•˜๋Š” ๊ฒƒ์— ์žˆ์–ด ํ ์˜์—ญ์— ๋Œ€ํ•œ ์ง‘์ค‘๋„๋ฅผ ๋†’์ด๋Š” ๋ฐฉ๋ฒ•์ด ๋” ์ข‹์€ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๊ณ , ์ด์— ๋”ฐ๋ผ ํ๋ถ€์ข… ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋‹ค์–‘ํ•œ ํ ์งˆํ™˜์„ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•  ๋•Œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ํ™œ์šฉ๋˜์–ด ๋” ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

โ›” .gitignore

  • Repository์—๋Š” ๋””๋ ‰ํ† ๋ฆฌ์˜ ์šฉ๋Ÿ‰์ด ํฌ๊ธฐ ๋•Œ๋ฌธ์— ์˜ฌ๋ผ๊ฐ€์ง€ ๋ชป ํ•œ ํŒŒ์ผ๋“ค์ด ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์•„๋ž˜๋Š” ํ•ด๋‹น ๋””๋ ‰ํ† ๋ฆฌ์˜ ๋ฆฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค.
  • ํ•ด๋‹น ๋””๋ ‰ํ† ๋ฆฌ๋“ค์€ ์ „๋ถ€ ๋กœ์ปฌ ๋ฆฌํฌ์ง€ํ† ๋ฆฌ์—์„œ ๊ด€๋ฆฌ๋ฅผ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
  • ๋˜ํ•œ, ์ด ๋””๋ ‰ํ† ๋ฆฌ๋“ค์ด ์—†๋Š” ๊ฒฝ์šฐ์—๋Š” streamlit์˜ ์‚ฌ์šฉ์ด ๋ถˆ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
Type File Name Size Description
Directory classification/densenet_parameters 620MB DenseNet121 ํ•™์Šต ํŒŒ๋ผ๋ฏธํ„ฐ
Directory classification2/vgg_parameters 19.2GB VGG16 ํ•™์Šต ํŒŒ๋ผ๋ฏธํ„ฐ
Directory segmentation/parameters 766MB U-Net ๊ธฐ๋ฐ˜ ๋ชจ๋ธ ํ•™์Šต ํŒŒ๋ผ๋ฏธํ„ฐ
Directory segmentation inference/target_and_predict 1.96GB U-Net ๊ธฐ๋ฐ˜ ๋ชจ๋ธ ์ถ”๋ก  ๋ฐ์ดํ„ฐ

๐Ÿ˜€ Self Feedback

๋ณธ ์—ฐ๊ตฌ๋ฅผ ์ด๋Œ์–ด๊ฐ€๋ฉด์„œ ๋ถ€์กฑํ–ˆ๋˜ ์ ์„ ๊ธฐ๋กํ•˜์—ฌ, ์•ž์œผ๋กœ ๋” ๋‚˜์€ ์—ฐ๊ตฌ๋ฅผ ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.

1. ๊ด€๋ จ ์—ฐ๊ตฌ ํƒ์ƒ‰

  • ํ”„๋กœ์ ํŠธ๋ฅผ ์‹œ์ž‘ํ•  ๋•Œ, ๋‹จ์ˆœํžˆ ์•„์ด๋””์–ด์—์„œ ์‹œ์ž‘ํ•˜์—ฌ ๋ชจ๋“  ๊ฑธ ์ด๋Œ์–ด ๊ฐ”๊ธฐ ๋•Œ๋ฌธ์— ํ”„๋กœ์ ํŠธ๋ฅผ ํ•จ์— ์žˆ์–ด์„œ ์ถฉ๋ถ„ํ•œ ๋…ผ๋ฆฌ์ ์ธ ๊ทผ๊ฑฐ๊ฐ€ ๋ถ€์กฑํ–ˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
  • ์•ž์œผ๋กœ ์‹œ์ž‘ ์ „์—๋Š” ๊ด€๋ จ ์—ฐ๊ตฌ ์ตœ์†Œ 7ํŽธ ์ด์ƒ์€ ์ฐพ์•„๋ณผ ๊ฒƒ!

2. VGG ์ด๋ฏธ์ง€ ์‚ฌ์ด์ฆˆ ๊ฐ์†Œ

  • ํ•ด๋‹น ํ”„๋กœ์ ํŠธ์—์„œ๋Š” DenseNet121, VGG16์„ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค. ์ถฉ๋ถ„ํ•œ ๋‹ค์–‘์„ฑ์„ ์ œ๊ณตํ–ˆ๋‹ค๊ณ  ์ƒ๊ฐํ•˜์ง€๋งŒ, ์—ฌ๊ธฐ์„œ VGG16์—์„œ Input Size๊นŒ์ง€ ์ค„์—ฌ '๋‹ค์–‘์„ฑ์„ ๊ณผํ•˜๊ฒŒ ์ค€ ๊ฑด ์•„๋‹๊นŒ'๋ผ๊ณ  ๋Š๋‚€ ๋ถ€๋ถ„์ด์—ˆ์Šต๋‹ˆ๋‹ค.

3. Python Script ์ ๊ทน ํ™œ์šฉ

  • ์ตœ๊ทผ ์ด ํ”„๋กœ์ ํŠธ ์ดํ›„, ์ƒˆ๋กœ์šด ํ”„๋กœ์ ํŠธ๋ฅผ ํ•˜๋ฉด์„œ ์˜คํ”ˆ ์†Œ์Šค๋ฅผ ๋ฆฌ๋ทฐํ•  ์ผ์ด ๋งŽ์•„์กŒ์Šต๋‹ˆ๋‹ค.
  • ์ด๋ฅผ ํ†ตํ•ด ์ด๋ฒˆ ํ”„๋กœ์ ํŠธ์˜ ํŒŒ์ผ ์‹œ์Šคํ…œ ๊ตฌ์„ฑ์— ์•„์‰ฌ์šด ๋ถ€๋ถ„๋“ค์ด ๋งŽ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. (์ค‘๋ณต์ ์ธ ๋ถ€๋ถ„, ์ด๋กœ ์ธํ•œ ๋…ธํŠธ๋ถ ํŒŒ์ผ ๊ฐ„์— ๋ฌด๊ฒฐ์„ฑ ์ €ํ•˜)
  • ์•ž์œผ๋กœ ์˜คํ”ˆ ์†Œ์Šค์™€ ๊ฐ™์€ ํŒจํ‚ค์ง€, ๋ชจ๋“ˆ ๊ตฌ์กฐ๋ฅผ ์ ๊ทน์ ์œผ๋กœ ์ฐจ์šฉํ•˜์—ฌ ํ”„๋กœ์ ํŠธ๋ฅผ ๊ตฌ์„ฑํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

About

Pulmonary Edema Classification using Lung Segmentation | JKIICE Acceptance Paper | OMS 1

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published