Skip to content

Commit

Permalink
Reduce the complexity of graphs/minimum_spanning_tree_prims.py (TheAl…
Browse files Browse the repository at this point in the history
…gorithms#7952)

* Lower the --max-complexity threshold in the file .flake8

* Add test

* Reduce the complexity of graphs/minimum_spanning_tree_prims.py

* Remove backslashes

* Remove # noqa: E741

* Fix the flake8 E741 issues

* Refactor

* Fix
  • Loading branch information
MaximSmolskiy authored Nov 2, 2022
1 parent db5215f commit a02de96
Show file tree
Hide file tree
Showing 2 changed files with 76 additions and 53 deletions.
2 changes: 1 addition & 1 deletion .flake8
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
[flake8]
max-line-length = 88
# max-complexity should be 10
max-complexity = 21
max-complexity = 20
extend-ignore =
# Formatting style for `black`
E203 # Whitespace before ':'
Expand Down
127 changes: 75 additions & 52 deletions graphs/minimum_spanning_tree_prims.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,40 +2,45 @@
from collections import defaultdict


def prisms_algorithm(l): # noqa: E741
class Heap:
def __init__(self):
self.node_position = []

node_position = []
def get_position(self, vertex):
return self.node_position[vertex]

def get_position(vertex):
return node_position[vertex]
def set_position(self, vertex, pos):
self.node_position[vertex] = pos

def set_position(vertex, pos):
node_position[vertex] = pos

def top_to_bottom(heap, start, size, positions):
def top_to_bottom(self, heap, start, size, positions):
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
m = 2 * start + 1
smallest_child = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
m = 2 * start + 1
smallest_child = 2 * start + 1
else:
m = 2 * start + 2
if heap[m] < heap[start]:
temp, temp1 = heap[m], positions[m]
heap[m], positions[m] = heap[start], positions[start]
smallest_child = 2 * start + 2
if heap[smallest_child] < heap[start]:
temp, temp1 = heap[smallest_child], positions[smallest_child]
heap[smallest_child], positions[smallest_child] = (
heap[start],
positions[start],
)
heap[start], positions[start] = temp, temp1

temp = get_position(positions[m])
set_position(positions[m], get_position(positions[start]))
set_position(positions[start], temp)
temp = self.get_position(positions[smallest_child])
self.set_position(
positions[smallest_child], self.get_position(positions[start])
)
self.set_position(positions[start], temp)

top_to_bottom(heap, m, size, positions)
self.top_to_bottom(heap, smallest_child, size, positions)

# Update function if value of any node in min-heap decreases
def bottom_to_top(val, index, heap, position):
def bottom_to_top(self, val, index, heap, position):
temp = position[index]

while index != 0:
Expand All @@ -47,70 +52,88 @@ def bottom_to_top(val, index, heap, position):
if val < heap[parent]:
heap[index] = heap[parent]
position[index] = position[parent]
set_position(position[parent], index)
self.set_position(position[parent], index)
else:
heap[index] = val
position[index] = temp
set_position(temp, index)
self.set_position(temp, index)
break
index = parent
else:
heap[0] = val
position[0] = temp
set_position(temp, 0)
self.set_position(temp, 0)

def heapify(heap, positions):
def heapify(self, heap, positions):
start = len(heap) // 2 - 1
for i in range(start, -1, -1):
top_to_bottom(heap, i, len(heap), positions)
self.top_to_bottom(heap, i, len(heap), positions)

def delete_minimum(heap, positions):
def delete_minimum(self, heap, positions):
temp = positions[0]
heap[0] = sys.maxsize
top_to_bottom(heap, 0, len(heap), positions)
self.top_to_bottom(heap, 0, len(heap), positions)
return temp

visited = [0 for i in range(len(l))]
nbr_tv = [-1 for i in range(len(l))] # Neighboring Tree Vertex of selected vertex

def prisms_algorithm(adjacency_list):
"""
>>> adjacency_list = {0: [[1, 1], [3, 3]],
... 1: [[0, 1], [2, 6], [3, 5], [4, 1]],
... 2: [[1, 6], [4, 5], [5, 2]],
... 3: [[0, 3], [1, 5], [4, 1]],
... 4: [[1, 1], [2, 5], [3, 1], [5, 4]],
... 5: [[2, 2], [4, 4]]}
>>> prisms_algorithm(adjacency_list)
[(0, 1), (1, 4), (4, 3), (4, 5), (5, 2)]
"""

heap = Heap()

visited = [0] * len(adjacency_list)
nbr_tv = [-1] * len(adjacency_list) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
distance_tv = [] # Heap of Distance of vertices from their neighboring vertex
positions = []

for x in range(len(l)):
p = sys.maxsize
distance_tv.append(p)
positions.append(x)
node_position.append(x)
for vertex in range(len(adjacency_list)):
distance_tv.append(sys.maxsize)
positions.append(vertex)
heap.node_position.append(vertex)

tree_edges = []
visited[0] = 1
distance_tv[0] = sys.maxsize
for x in l[0]:
nbr_tv[x[0]] = 0
distance_tv[x[0]] = x[1]
heapify(distance_tv, positions)
for neighbor, distance in adjacency_list[0]:
nbr_tv[neighbor] = 0
distance_tv[neighbor] = distance
heap.heapify(distance_tv, positions)

for _ in range(1, len(l)):
vertex = delete_minimum(distance_tv, positions)
for _ in range(1, len(adjacency_list)):
vertex = heap.delete_minimum(distance_tv, positions)
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex))
visited[vertex] = 1
for v in l[vertex]:
if visited[v[0]] == 0 and v[1] < distance_tv[get_position(v[0])]:
distance_tv[get_position(v[0])] = v[1]
bottom_to_top(v[1], get_position(v[0]), distance_tv, positions)
nbr_tv[v[0]] = vertex
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(neighbor)]
):
distance_tv[heap.get_position(neighbor)] = distance
heap.bottom_to_top(
distance, heap.get_position(neighbor), distance_tv, positions
)
nbr_tv[neighbor] = vertex
return tree_edges


if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
n = int(input("Enter number of vertices: ").strip())
e = int(input("Enter number of edges: ").strip())
adjlist = defaultdict(list)
for x in range(e):
l = [int(x) for x in input().strip().split()] # noqa: E741
adjlist[l[0]].append([l[1], l[2]])
adjlist[l[1]].append([l[0], l[2]])
print(prisms_algorithm(adjlist))
edges_number = int(input("Enter number of edges: ").strip())
adjacency_list = defaultdict(list)
for _ in range(edges_number):
edge = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))

0 comments on commit a02de96

Please sign in to comment.