-
Notifications
You must be signed in to change notification settings - Fork 75
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Zhiyuan Chen <[email protected]>
- Loading branch information
1 parent
d3cb4ca
commit 5646303
Showing
10 changed files
with
970 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
from .config import UniFoldConfig, base_config, model_config | ||
from .data import DataConfig | ||
from .globals import GlobalsConfig | ||
from .loss import LossConfig | ||
from .model import ModelConfig | ||
|
||
__all__ = ["base_config", "model_config", "UniFoldConfig", "GlobalsConfig", "DataConfig", "ModelConfig", "LossConfig"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
from typing import Any, Optional | ||
from warnings import warn | ||
|
||
from chanfig import Config | ||
|
||
from .data import DataConfig | ||
from .globals import GlobalsConfig | ||
from .loss import LossConfig | ||
from .model import ModelConfig | ||
|
||
|
||
class UniFoldConfig(Config): | ||
def __init__(self, *args, **kwargs): | ||
self.globals = GlobalsConfig() | ||
self.data = DataConfig() | ||
self.model = ModelConfig() | ||
self.loss = LossConfig() | ||
super().__init__(*args, **kwargs) | ||
|
||
|
||
def recursive_set(c: Config, key: str, value: Any, ignore: Optional[str] = None): | ||
with c.unlocked(): | ||
for k, v in c.items(): | ||
if ignore is not None and k == ignore: | ||
continue | ||
if isinstance(v, Config): | ||
recursive_set(v, key, value) | ||
elif k == key: | ||
c[k] = value | ||
|
||
|
||
def base_config(): | ||
deprecation_message = "`base_config` is deprecated.\nPlease call `UniFoldConfig()` instead" | ||
warn(deprecation_message, DeprecationWarning, stacklevel=2) | ||
return UniFoldConfig() | ||
|
||
|
||
def model_config(name, train=False): | ||
c = UniFoldConfig() | ||
|
||
def model_2_v2(c): | ||
recursive_set(c, "v2_feature", True) | ||
recursive_set(c, "gumbel_sample", True) | ||
c.model.heads.masked_msa.d_out = 22 | ||
c.model.structure_module.separate_kv = True | ||
c.model.structure_module.ipa_bias = False | ||
c.model.template.template_angle_embedder.d_in = 34 | ||
return c | ||
|
||
def multimer(c): | ||
recursive_set(c, "is_multimer", True) | ||
recursive_set(c, "max_extra_msa", 1152) | ||
recursive_set(c, "max_msa_clusters", 128) | ||
recursive_set(c, "v2_feature", True) | ||
recursive_set(c, "gumbel_sample", True) | ||
c.model.template.template_angle_embedder.d_in = 34 | ||
c.model.template.template_pair_stack.tri_attn_first = False | ||
c.model.template.template_pointwise_attention.enabled = False | ||
c.model.heads.pae.enabled = True | ||
# we forget to enable it in our training, so disable it here | ||
c.model.heads.pae.disable_enhance_head = True | ||
c.model.heads.masked_msa.d_out = 22 | ||
c.model.structure_module.separate_kv = True | ||
c.model.structure_module.ipa_bias = False | ||
c.model.structure_module.trans_scale_factor = 20 | ||
c.loss.pae.weight = 0.1 | ||
c.model.input_embedder.tf_dim = 21 | ||
c.data.train.crop_size = 384 | ||
c.loss.violation.weight = 0.02 | ||
c.loss.chain_centre_mass.weight = 1.0 | ||
return c | ||
|
||
if name == "model_1": | ||
pass | ||
elif name == "model_1_ft": | ||
recursive_set(c, "max_extra_msa", 5120) | ||
recursive_set(c, "max_msa_clusters", 512) | ||
c.data.train.crop_size = 384 | ||
c.loss.violation.weight = 0.02 | ||
elif name == "model_1_af2": | ||
recursive_set(c, "max_extra_msa", 5120) | ||
recursive_set(c, "max_msa_clusters", 512) | ||
c.data.train.crop_size = 384 | ||
c.loss.violation.weight = 0.02 | ||
c.loss.repr_norm.weight = 0 | ||
c.model.heads.experimentally_resolved.enabled = True | ||
c.loss.experimentally_resolved.weight = 0.01 | ||
c.globals.alphafold_original_mode = True | ||
elif name == "model_2": | ||
pass | ||
elif name == "model_init": | ||
pass | ||
elif name == "model_init_af2": | ||
c.globals.alphafold_original_mode = True | ||
pass | ||
elif name == "model_2_ft": | ||
recursive_set(c, "max_extra_msa", 1024) | ||
recursive_set(c, "max_msa_clusters", 512) | ||
c.data.train.crop_size = 384 | ||
c.loss.violation.weight = 0.02 | ||
elif name == "model_2_af2": | ||
recursive_set(c, "max_extra_msa", 1024) | ||
recursive_set(c, "max_msa_clusters", 512) | ||
c.data.train.crop_size = 384 | ||
c.loss.violation.weight = 0.02 | ||
c.loss.repr_norm.weight = 0 | ||
c.model.heads.experimentally_resolved.enabled = True | ||
c.loss.experimentally_resolved.weight = 0.01 | ||
c.globals.alphafold_original_mode = True | ||
elif name == "model_2_v2": | ||
c = model_2_v2(c) | ||
elif name == "model_2_v2_ft": | ||
c = model_2_v2(c) | ||
recursive_set(c, "max_extra_msa", 1024) | ||
recursive_set(c, "max_msa_clusters", 512) | ||
c.data.train.crop_size = 384 | ||
c.loss.violation.weight = 0.02 | ||
elif name == "model_3_af2" or name == "model_4_af2": | ||
recursive_set(c, "max_extra_msa", 5120) | ||
recursive_set(c, "max_msa_clusters", 512) | ||
c.data.train.crop_size = 384 | ||
c.loss.violation.weight = 0.02 | ||
c.loss.repr_norm.weight = 0 | ||
c.model.heads.experimentally_resolved.enabled = True | ||
c.loss.experimentally_resolved.weight = 0.01 | ||
c.globals.alphafold_original_mode = True | ||
c.model.template.enabled = False | ||
c.model.template.embed_angles = False | ||
recursive_set(c, "use_templates", False) | ||
recursive_set(c, "use_template_torsion_angles", False) | ||
elif name == "model_5_af2": | ||
recursive_set(c, "max_extra_msa", 1024) | ||
recursive_set(c, "max_msa_clusters", 512) | ||
c.data.train.crop_size = 384 | ||
c.loss.violation.weight = 0.02 | ||
c.loss.repr_norm.weight = 0 | ||
c.model.heads.experimentally_resolved.enabled = True | ||
c.loss.experimentally_resolved.weight = 0.01 | ||
c.globals.alphafold_original_mode = True | ||
c.model.template.enabled = False | ||
c.model.template.embed_angles = False | ||
recursive_set(c, "use_templates", False) | ||
recursive_set(c, "use_template_torsion_angles", False) | ||
elif name == "multimer": | ||
c = multimer(c) | ||
elif name == "multimer_ft": | ||
c = multimer(c) | ||
recursive_set(c, "max_extra_msa", 1152) | ||
recursive_set(c, "max_msa_clusters", 256) | ||
c.data.train.crop_size = 384 | ||
c.loss.violation.weight = 0.5 | ||
elif name == "multimer_af2": | ||
recursive_set(c, "max_extra_msa", 1152) | ||
recursive_set(c, "max_msa_clusters", 256) | ||
recursive_set(c, "is_multimer", True) | ||
recursive_set(c, "v2_feature", True) | ||
recursive_set(c, "gumbel_sample", True) | ||
c.model.template.template_angle_embedder.d_in = 34 | ||
c.model.template.template_pair_stack.tri_attn_first = False | ||
c.model.template.template_pointwise_attention.enabled = False | ||
c.model.heads.pae.enabled = True | ||
c.model.heads.experimentally_resolved.enabled = True | ||
c.model.heads.masked_msa.d_out = 22 | ||
c.model.structure_module.separate_kv = True | ||
c.model.structure_module.ipa_bias = False | ||
c.model.structure_module.trans_scale_factor = 20 | ||
c.loss.pae.weight = 0.1 | ||
c.loss.violation.weight = 0.5 | ||
c.loss.experimentally_resolved.weight = 0.01 | ||
c.model.input_embedder.tf_dim = 21 | ||
c.globals.alphafold_original_mode = True | ||
c.data.train.crop_size = 384 | ||
c.loss.repr_norm.weight = 0 | ||
c.loss.chain_centre_mass.weight = 1.0 | ||
recursive_set(c, "outer_product_mean_first", True) | ||
else: | ||
raise ValueError(f"invalid --model-name: {name}.") | ||
if train: | ||
c.globals.chunk_size = None | ||
recursive_set(c, "inf", 3e4) | ||
recursive_set(c, "eps", 1e-5, "loss") | ||
return c |
Oops, something went wrong.