Skip to content

dora-rs/dora-baai

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

dora-baai

  1. Install dora-rs

Check website for more install: https://dora-rs.ai/

curl --proto '=https' --tlsv1.2 -sSf https://raw.githubusercontent.com/dora-rs/dora/main/install.sh | bash
  1. Clone dora-rs github repo
cd ..
git clone https://github.com:dora-rs/dora.git --branch qwenvl2

git clone https://github.com:hiyouga/LLaMA-Factory.git
  1. Install Conda

  2. Create a new env

conda create -y -n lebai python=3.10.12 && conda activate lebai
  1. Install cargo
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
  1. Install dora nodes
# For visualization
cargo install --force [email protected]

cd robots/lebai
dora up
dora build graphs/keyboard_teleop.yml
  1. Start the dataflow
dora start graphs/keyboard_teleop.yml

On run

cd robots/lebai
conda activate lebai
dora up
dora start graphs/keyboard_teleop.yml

For training the model

  • Install llama-factory
pip install -e "../llama-factory[torch,metrics]"
  • Modify llama-factory/examples/train_lora/qwen2vl_lora_sft.yaml so that the dataset is the one you want to use,
- dataset: mllm_demo,identity  # video: mllm_video_demo
+ dataset: dora_demo_107,identity`
  • You can also choose the 2B model instead of the 7B model with
- model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
+ model_name_or_path: Qwen/Qwen2-VL-2B-Instruct
  • Then
llamafactory-cli train examples/train_lora/qwen2vl_lora_sft.yaml

Qwenvl2

Make sure to install flash-attention 2 before installing qwenvl2

# Check version on: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.6.3
# e.g.:
pip install https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu123torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

Make sure to use the abi False version. FYI, ABI means python compatible version.

Then

dora build qwenvl2.yml

About

Dora - BAAI WIP repository

Resources

Stars

Watchers

Forks

Packages

No packages published