Skip to content

dongweigogo/RNA_seq_Biotrainee

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[TOC]

实战练习:差异表达分析与功能分析

Mengyuan Shen (2017/12/23)

logo

0 写在前面

各位小伙伴在生信技能树的两天两夜基础培训课程后,相信大家已经对转录组有了初步的了解。现在我们要开始项目实战,从数据下载、比对、定量到差异分析与功能注释,下面我会一步一步演示给大家看。

1 环境配置软件安装

关于环境配置这里不在多说,在之前的课程里我们都有自己处理数据的计算机或者服务器了。现在只需要安装我们需要的软件即可。

# 创建一个专门安装软件的文件夹
mkdir Biosoft & cd Biosoft 

1.1 软件列表

  • Miniconda (软件管理器,可一键安装生信软件,类似各种软件管家;)
  • git (可以用来下载GitHub上的软件;管理分享自己代码;windows上安装可以用git bash学习Linux的一些基本操作;)
  • notepad++ (代码编辑器,类似的还有editplus、Sublime)
  • fastqc\RSeQC (高通量测序质控软件)
  • salmon (不需要比对的定量软件)
  • subread(史上最快的转录组流程,比对+定量)
  • R\Rstudio (统计、画图;用于后续分析与功能分析)

本实战练习要求:在服务器上安装:Miniconda/fastqc/salmon/subread 。在Windows上安装:git/notepad++/R/Rstudio 。下面是几个软件的安装代码,以供参考:

1.2 Minconda

# 下载安装包(Linux版本)
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
# 也可以在清华镜像下载:https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/ 
# wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-latest-Linux-x86_64.sh

# 直接安装,一路yes即可
bash Miniconda3-latest-Linux-x86_64.sh

# 添加生信软件包下载频道
conda config --add channels conda-forge
conda config --add channels defaults
conda config --add channels r
conda config --add channels bioconda

# 下面是清华的频道镜像:https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
# 据说有时候不稳定,大家可以尝试下:
# conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
# conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
# conda config --set show_channel_urls yes
# conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
# conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
# conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
# conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/

上面频道的添加大家也可以洲更写的指导说明,也可以自己尝试下,该软件的安装并不难。Minconda3会自带Python3.6,所以大家不用再特地安装Python了。

1.3 fastqc

  • conda安装

    conda install -c bioconda fastqc=0.11.5

  • 自己下载安装包安装

    mkdir fastqc &&  cd fastqc
    wget http://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.5.zip
    # curl: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 
    unzip fastqc_v0.11.5.zip
    # 中间要安装unzip和java,根据系统提示安装,一般是sudo apt install后加软件名。

1.4 subread

Version 1.5.3

跟上面fastqc软件一样,可以使用conda进行subread的安装:conda install -c bioconda subread,也可以使用下载安装包的方法进行安装,各有好处,使用安装包安装的好处是知道自己安装软件中有哪些应用,安装最新版本;直接用conda安装则无法判断,虽然他帮你把一些应用加到环境变量里。

1.5 Salmon

Salmon v0.8.2

conda install -c bioconda salmon

1.6 RSeQC

RSeQC 是依赖于python的,直接使用 pip 进行安装: pip install RSeQC

官网:RSeQC: An RNA-seq Quality Control Package

中文版可以看:高通量测序质控及可视化工具包RSeQC

1.7 R包

install.packages("tidyverse") ; library(tidyverse)
install.packages("optparse") ; library(optparse)
install.packages("UpSetR") ; library(UpSetR)
install.packages("rjson") ; library(rjson)

source("https://bioconductor.org/biocLite.R")
options(BioC_mirror="http://mirrors.ustc.edu.cn/bioc/")
biocLite("DESeq2") ; library(DESeq2)
biocLite('edgeR') ; library(edgeR)
biocLite('limma') ; library(limma)
biocLite("clusterProfiler") ; library(clusterProfiler)
biocLite("DOSE") ; library(DOSE)
biocLite("KEGG.db") ; library(KEGG.db)
biocLite("org.At.tair.db") ; library(org.At.tair.db)
biocLite("pheatmap") ; library(pheatmap)
biocLite("RColorBrewer") ; library(RColorBrewer)
biocLite("AnnotationHub") ; library(AnnotationHub)
biocLite('GenomicFeatures') ; library(GenomicFeatures)
biocLite("tximport") ; library(tximport)

一定要提取安装好,保证以上代码正常运行;

2 读文章拿到测序数据

数据来自于发表在Nature commmunication上的一篇文章 “Temporal dynamics of gene expression and histone marks at the Arabidopsis shoot meristem during flowerin”。原文用RNA-Seq的方式研究在开花阶段,芽分生组织在不同时期的基因表达变化。

实验设计: 4个时间段(0,1,2,3),分别有4个生物学重复,一共有16个样品。

2.1 测序数据

# 创建一个文件夹,用来存放FASTQ文件(公司返回的原始数据)
mkdir -p rna_practice/data/fastq

# 获取样本信息
wget http://www.ebi.ac.uk/arrayexpress/files/E-MTAB-5130/E-MTAB-5130.sdrf.txt
tail -n +2 E-MTAB-5130.sdrf.txt | cut -f 32,36 |sort -u

# 下载数据
# fastq文件下载链接在第几列
# head -n1 E-MTAB-5130.sdrf.txt | tr '\t' '\n' | nl | grep URI
# 根据上述返回数字,获取文件第33列,然后下载fastq文件
# tail -n +2 E-MTAB-5130.sdrf.txt | cut -f 33 | xargs -i wget {}
# 也可以编写批量下载数据的shell脚本,如下:
perl -alne 'if(/.*(ftp:.*gz).*/){print "nohup wget $1 &"}' E-MTAB-5130.sdrf.txt >fq_data_download.sh
bash fq_data_download.sh

2.2 参考基因组

# 创建文件夹用来放置参考基因组或注释文件
mkdir -p rna_practice/data/ref
# 下载cdna(转录本)、dna(基因组)、gff3、gtf文件(注释文件)
nohup wget ftp://ftp.ensemblgenomes.org/pub/plants/release-28/fasta/arabidopsis_thaliana/cdna/Arabidopsis_thaliana.TAIR10.28.cdna.all.fa.gz &
nohup wget ftp://ftp.ensemblgenomes.org/pub/plants/release-28/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.28.dna.genome.fa.gz &
nohup wget ftp://ftp.ensemblgenomes.org/pub/plants/release-28/gff3/arabidopsis_thaliana/Arabidopsis_thaliana.TAIR10.28.gff3.gz &
nohup wget ftp://ftp.ensemblgenomes.org/pub/plants/release-28/gtf/arabidopsis_thaliana/Arabidopsis_thaliana.TAIR10.28.gtf.gz &

# 使用nohup &可以将任务放置后台运行,可以关闭远程控制端

3 序列比对及基因定量

3.1 原文的流程

TopHat -> SummarizeOverlaps -> Deseq2 -> AmiGO,其中比对的参考基因组为TAIR10 ver.24 ,并且屏蔽了ribosomal RNA regions (2:3471–9557; 3:14,197,350–14,203,988)。Deseq2只计算至少在一个时间段的FPKM的count > 1 的基因。

Next generation sequencing (NGS) reads were mapped to Arabidopsis thaliana reference transcriptome TAIR10 ver. 24, with ribosomal RNA regions (2:3471–9557; 3:14,197,350–14,203,988) masked, using **TopHat 2.0.13 **(no-mixed alignments; up to 20 secondary alignments; no novel junctions)61. Counts of NGS reads covering transcripts were computed using the function summarizeOverlaps62 in R. Expressed genes were defined as those having the value of FPKM>1 at least at one time point. Read counts were submitted to differential gene expression analysis in Deseq2 (default parameters, FDR<0.05)63. Regularized logarithms of read count computed by Deseq2, denoted by rlog, were used for the analysis of relationships between gene expression level and histone modifications signal.

3.2 实战流程

3.2.1 Salmon流程

不需要比对,直接对转录水平进行定量。

  • 创建索引

    salmon index -t Arabidopsis_thaliana.TAIR10.28.cdna.all.fa.gz -i athal_index_salmon

  • 定量

#! /bin/bash
index=~/rna_seq_practice_2/data/ref/athal_index_salmon ## 指定索引文件夹
quant=~/rna_seq_practice_2/work/quant_salmon # 指定定量文件输出文件夹
for fn in ERR1698{194..209};
do
   sample=`basename ${fn}`
# basename命令用于去掉路径信息,返回纯粹的文件名,如果指定的文件的扩展名,则将扩展名也一并去掉。
   echo "Processin sample ${sampe}"
  salmon quant -i $index -l A \
       -1 ${sample}_1.fastq.gz \
       -2 ${sample}_2.fastq.gz \
       -p 5 -o $quant/${sample}_quant
done
# quant_salmon.sh

nohup bash quant_salmon.sh &

3.2.2 subread流程

  • 创建索引
gunzip Arabidopsis_thaliana.TAIR10.28.dna.genome.fa.gz
subread-buildindex -o athal_index_subread   Arabidopsis_thaliana.TAIR10.28.dna.genome.fa
  • 比对
#! /bin/bash
index=~/rna_seq_practice_2/data/ref/athal_index_subread
map=~/rna_seq_practice_2/work/map
for fn in ERR1698{194..209};
do
    sample=`basename ${fn}`
    echo "Processin sample ${sampe}" 
    subjunc -i $index \
        -r ${sample}_1.fastq.gz \
        -R ${sample}_2.fastq.gz \
        -T 5 -o $map/${sample}_subjunc.bam
# 比对的sam自动转为bam,但是并不按照参考基因组坐标排序
done
# map_subjunc.sh

打开一个screen窗口运行bash map_subjunc.sh ,保证当ssh连接断开后服务器也能在后台运行。

  • 定量
featureCounts=~/anaconda2/bin
# gff3=~/rna_seq_practice_2/data/ref/Arabidopsis_thaliana.TAIR10.28.gff3.gz
gtf=~/rna_seq_practice_2/data/ref/Arabidopsis_thaliana.TAIR10.28.gtf
count=~/rna_seq_practice_2/work/quant_subjunc
nohup $featureCounts/featureCounts  -T 5 -p -t exon -g gene_name -a $gtf -o  $count/counts.txt   *.bam &
nohup $featureCounts/featureCounts  -T 5 -p -t exon -g gene_id -a $gtf -o  $count/counts_id.txt   *.bam &

3.2.3 其他比对软件

# hisat
hisat -p 5 -x $hisat2_mm10_index -1 $fq1 -2 $fq2 -S $sample.sam 2>$sample.hisat.log
samtools sort -O bam -@ 5  -o ${sample}_hisat.bam $sample.sam
# bwa

bwa mem -t 5 -M  $bwa_mm10_index $fq1 $fq2 1>$sample.sam 2>/dev/null 
samtools sort -O bam -@ 5  -o ${sample}_bwa.bam $sample.sam
# bowtie

bowtie -p 5 -x $bowtie2_mm10_index -1 $fq1  -2 $fq2 | samtools sort  -O bam  -@ 5 -o - >${sample}_bowtie.bam
# star

## star软件载入参考基因组非常耗时,约10分钟,也比较耗费内存,但是比对非常快,5M的序列就两分钟即可
star --runThreadN  5 --genomeDir $star_mm10_index --readFilesCommand zcat --readFilesIn  $fq1 $fq2 --outFileNamePrefix  ${sample}_star 
## --outSAMtype BAM  可以用这个参数设置直接输出排序好的bam文件
samtools sort -O bam -@ 5  -o ${sample}_star.bam ${sample}_starAligned.out.sam

也可以使用HTseq进行计数。

4 差异表达分析

4.1 设计矩阵和表达矩阵

差异表达分析

Deseq2_DEG.R

• 使用DESeq2进行差异分析

## 数据过滤
# dds <- dds[ rowSums(counts(dds)) > 1 ,]
# dim(dds)
dds <- DESeq(dds)
plotDispEsts(dds, main="Dispersion plot")
rld <- rlogTransformation(dds)
exprMatrix_rlog=assay(rld)
res <- results(dds, contrast=c("condition",'Day1','Day0'))
resOrdered <- res[order(res$padj),] 
res_Day1_Day0=as.data.frame(resOrdered)

4.2 一步法差异分析

原教程网址:https://github.com/jmzeng1314/my-R/tree/master/DEG_scripts

下载Jimmy的一步法差异分析脚本

# wget https://raw.githubusercontent.com/jmzeng1314/my-R/master/DEG_scripts/run_DEG.R
# wget https://raw.githubusercontent.com/jmzeng1314/my-R/master/DEG_scripts/tair/exprSet.txt
# wget https://raw.githubusercontent.com/jmzeng1314/my-R/master/DEG_scripts/tair/group_info.txt
# 下载以上表达矩阵、分组矩阵和代码,进行运行:
Rscript run_DEG.R -e exprSet.txt -g group_info.txt -c 'Day1-Day0' -s counts  -m DESeq2

5 功能分析

差异分析结果的功能注释:

function_DEG.R

• 导入差异分析结果,判断显著差异基因

• 画个火山图看看挑选的差异基因合理与否

• 显著差异基因的GO/KEGG注释

• OrgDb类型注释数据学习,了解基因注释原理其实是ID转换

6 参考资料

About

DEG analysis and KEGG/GO enrichment analysis

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 100.0%