PEAK: Integrating Curated and Noisy Prior Knowledge in Gene Regulatory Network Inference.
PEAK is a framework for predicting gene regulatory network from gene expression data with different types of prior knowledge.
- Noisy: use penaltyScaling option
- Reliable: use FeatureScaling option
A Web server to submit gene expression data and prior knowledge and to visualize the results will be available soon. http://detangle.cs.vt.edu/
PEAK works in both Python 2.7+ and Python 3.4+
1- Install the following Python packages:
- scipy
- numpy
- matplotlib
- pandas
You can either use pip or anaconda:
pip install scipy numpy matplotlib pandas
2- build and intsall a modified version of scikit-learn
https://github.com/doaa-altarawy/scikit-learn
Instructions on building scikit-learn can be found here
http://scikit-learn.org/stable/developers/advanced_installation.html
Install packages:
- inline
- multicore
- elasticnet
- Matrix
- corpcor
- nnls
- parallel
1- On ubuntu, first install R:
sudo apt-get update
sudo apt-get install r-base
sudo apt-get install r-base-dev
2- Next, install open the R shell:
sudo R
Then in the R shell install packages:
install.packages(c("inline"))
install.packages(c("multicore"))
install.packages(c("elasticnet"))
install.packages(c("Matrix"))
install.packages(c("corpcor"))
install.packages(c("nnls"))
install.packages(c("parallel"))
3- To install the multicore package
download it from:
http://cran.r-project.org/src/contrib/Archive/multicore/
Then:
install.packages('/path/to/downloaded/multicore', repos = NULL, type="source")