Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[R] Prefer descriptive parameter names #11102

Merged
merged 1 commit into from
Dec 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 20 additions & 12 deletions R-package/R/callbacks.R
Original file line number Diff line number Diff line change
Expand Up @@ -960,17 +960,17 @@ xgb.cb.cv.predict <- function(save_models = FALSE, outputmargin = FALSE) {
#' booster = "gblinear",
#' objective = "reg:logistic",
#' eval_metric = "auc",
#' lambda = 0.0003,
#' alpha = 0.0003,
#' reg_lambda = 0.0003,
#' reg_alpha = 0.0003,
#' nthread = nthread
#' )
#'
#' # For 'shotgun', which is a default linear updater, using high eta values may result in
#' # For 'shotgun', which is a default linear updater, using high learning_rate values may result in
#' # unstable behaviour in some datasets. With this simple dataset, however, the high learning
#' # rate does not break the convergence, but allows us to illustrate the typical pattern of
#' # "stochastic explosion" behaviour of this lock-free algorithm at early boosting iterations.
#' bst <- xgb.train(
#' c(param, list(eta = 1.)),
#' c(param, list(learning_rate = 1.)),
#' dtrain,
#' evals = list(tr = dtrain),
#' nrounds = 200,
Expand All @@ -987,7 +987,7 @@ xgb.cb.cv.predict <- function(save_models = FALSE, outputmargin = FALSE) {
#' c(
#' param,
#' xgb.params(
#' eta = 0.8,
#' learning_rate = 0.8,
#' updater = "coord_descent",
#' feature_selector = "thrifty",
#' top_k = 1
Expand All @@ -1000,12 +1000,20 @@ xgb.cb.cv.predict <- function(save_models = FALSE, outputmargin = FALSE) {
#' )
#' matplot(xgb.gblinear.history(bst), type = "l")
#' # Componentwise boosting is known to have similar effect to Lasso regularization.
#' # Try experimenting with various values of top_k, eta, nrounds,
#' # Try experimenting with various values of top_k, learning_rate, nrounds,
#' # as well as different feature_selectors.
#'
#' # For xgb.cv:
#' bst <- xgb.cv(
#' c(param, list(eta = 0.8)),
#' c(
#' param,
#' xgb.params(
#' learning_rate = 0.8,
#' updater = "coord_descent",
#' feature_selector = "thrifty",
#' top_k = 1
#' )
#' ),
#' dtrain,
#' nfold = 5,
#' nrounds = 100,
Expand All @@ -1022,15 +1030,15 @@ xgb.cb.cv.predict <- function(save_models = FALSE, outputmargin = FALSE) {
#' booster = "gblinear",
#' objective = "multi:softprob",
#' num_class = 3,
#' lambda = 0.0003,
#' alpha = 0.0003,
#' reg_lambda = 0.0003,
#' reg_alpha = 0.0003,
#' nthread = nthread
#' )
#'
#' # For the default linear updater 'shotgun' it sometimes is helpful
#' # to use smaller eta to reduce instability
#' # to use smaller learning_rate to reduce instability
#' bst <- xgb.train(
#' c(param, list(eta = 0.5)),
#' c(param, list(learning_rate = 0.5)),
#' dtrain,
#' evals = list(tr = dtrain),
#' nrounds = 50,
Expand All @@ -1044,7 +1052,7 @@ xgb.cb.cv.predict <- function(save_models = FALSE, outputmargin = FALSE) {
#'
#' # CV:
#' bst <- xgb.cv(
#' c(param, list(eta = 0.5)),
#' c(param, list(learning_rate = 0.5)),
#' dtrain,
#' nfold = 5,
#' nrounds = 70,
Expand Down
1 change: 0 additions & 1 deletion R-package/R/utils.R
Original file line number Diff line number Diff line change
Expand Up @@ -493,7 +493,6 @@ NULL
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 2,
#' eta = 1,
#' nthread = 2,
#' objective = "binary:logistic"
#' )
Expand Down
10 changes: 2 additions & 8 deletions R-package/R/xgb.Booster.R
Original file line number Diff line number Diff line change
Expand Up @@ -267,7 +267,6 @@ xgb.get.handle <- function(object) {
#' nrounds = 5,
#' params = xgb.params(
#' max_depth = 2,
#' eta = 0.5,
#' nthread = nthread,
#' objective = "binary:logistic"
#' )
Expand Down Expand Up @@ -312,7 +311,6 @@ xgb.get.handle <- function(object) {
#' nrounds = 10,
#' params = xgb.params(
#' max_depth = 4,
#' eta = 0.5,
#' nthread = 2,
#' subsample = 0.5,
#' objective = "multi:softprob",
Expand All @@ -336,7 +334,6 @@ xgb.get.handle <- function(object) {
#' nrounds = 10,
#' params = xgb.params(
#' max_depth = 4,
#' eta = 0.5,
#' nthread = 2,
#' subsample = 0.5,
#' objective = "multi:softmax",
Expand Down Expand Up @@ -671,7 +668,6 @@ validate.features <- function(bst, newdata) {
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 2,
#' eta = 1,
#' nthread = 2,
#' objective = "binary:logistic"
#' )
Expand Down Expand Up @@ -779,7 +775,6 @@ xgb.attributes <- function(object) {
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 2,
#' eta = 1,
#' nthread = nthread,
#' objective = "binary:logistic"
#' )
Expand Down Expand Up @@ -834,13 +829,13 @@ xgb.config <- function(object) {
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 2,
#' eta = 1,
#' learning_rate = 1,
#' nthread = 2,
#' objective = "binary:logistic"
#' )
#' )
#'
#' xgb.model.parameters(bst) <- list(eta = 0.1)
#' xgb.model.parameters(bst) <- list(learning_rate = 0.1)
#'
#' @rdname xgb.model.parameters
#' @export
Expand Down Expand Up @@ -1281,7 +1276,6 @@ xgb.is.same.Booster <- function(obj1, obj2) {
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 2,
#' eta = 1,
#' nthread = 2,
#' objective = "binary:logistic"
#' )
Expand Down
2 changes: 1 addition & 1 deletion R-package/R/xgb.create.features.R
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@
#' dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
#' dtest <- with(agaricus.test, xgb.DMatrix(data, label = label, nthread = 2))
#'
#' param <- list(max_depth = 2, eta = 1, objective = 'binary:logistic', nthread = 1)
#' param <- list(max_depth = 2, learning_rate = 1, objective = 'binary:logistic', nthread = 1)
#' nrounds = 4
#'
#' bst <- xgb.train(params = param, data = dtrain, nrounds = nrounds)
Expand Down
2 changes: 0 additions & 2 deletions R-package/R/xgb.cv.R
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,6 @@
#' params = xgb.params(
#' nthread = 2,
#' max_depth = 3,
#' eta = 1,
#' objective = "binary:logistic"
#' ),
#' nfold = 5,
Expand Down Expand Up @@ -316,7 +315,6 @@ xgb.cv <- function(params = xgb.params(), data, nrounds, nfold,
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 2,
#' eta = 1,
#' nthread = 2,
#' objective = "binary:logistic"
#' )
Expand Down
1 change: 0 additions & 1 deletion R-package/R/xgb.dump.R
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,6 @@
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 2,
#' eta = 1,
#' nthread = 2,
#' objective = "binary:logistic"
#' )
Expand Down
6 changes: 2 additions & 4 deletions R-package/R/xgb.importance.R
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,6 @@
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 2,
#' eta = 1,
#' nthread = 2,
#' objective = "binary:logistic"
#' )
Expand All @@ -63,7 +62,7 @@
#' nrounds = 20,
#' params = xgb.params(
#' booster = "gblinear",
#' eta = 0.3,
#' learning_rate = 0.3,
#' nthread = 1,
#' objective = "binary:logistic"
#' )
Expand All @@ -82,7 +81,6 @@
#' nrounds = nrounds,
#' params = xgb.params(
#' max_depth = 3,
#' eta = 0.2,
#' nthread = 2,
#' objective = "multi:softprob",
#' num_class = nclass
Expand Down Expand Up @@ -112,7 +110,7 @@
#' nrounds = 15,
#' params = xgb.params(
#' booster = "gblinear",
#' eta = 0.2,
#' learning_rate = 0.2,
#' nthread = 1,
#' objective = "multi:softprob",
#' num_class = nclass
Expand Down
1 change: 0 additions & 1 deletion R-package/R/xgb.load.R
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,6 @@
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 2,
#' eta = 1,
#' nthread = nthread,
#' objective = "binary:logistic"
#' )
Expand Down
1 change: 0 additions & 1 deletion R-package/R/xgb.model.dt.tree.R
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,6 @@
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 2,
#' eta = 1,
#' nthread = nthread,
#' objective = "binary:logistic"
#' )
Expand Down
1 change: 0 additions & 1 deletion R-package/R/xgb.plot.importance.R
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,6 @@
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 3,
#' eta = 1,
#' nthread = nthread,
#' objective = "binary:logistic"
#' )
Expand Down
2 changes: 1 addition & 1 deletion R-package/R/xgb.plot.multi.trees.R
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@
#' verbose = 0,
#' params = xgb.params(
#' max_depth = 15,
#' eta = 1,
#' learning_rate = 1,
#' nthread = nthread,
#' objective = "binary:logistic",
#' min_child_weight = 50
Expand Down
3 changes: 1 addition & 2 deletions R-package/R/xgb.plot.shap.R
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@
#' nrounds = nrounds,
#' verbose = 0,
#' params = xgb.params(
#' eta = 0.1,
#' learning_rate = 0.1,
#' max_depth = 3,
#' subsample = 0.5,
#' objective = "binary:logistic",
Expand Down Expand Up @@ -114,7 +114,6 @@
#' verbose = 0,
#' params = xgb.params(
#' max_depth = 2,
#' eta = 0.3,
#' subsample = 0.5,
#' nthread = nthread,
#' objective = "multi:softprob",
Expand Down
1 change: 0 additions & 1 deletion R-package/R/xgb.plot.tree.R
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,6 @@
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 3,
#' eta = 1,
#' nthread = 2,
#' objective = "binary:logistic"
#' )
Expand Down
1 change: 0 additions & 1 deletion R-package/R/xgb.save.R
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,6 @@
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 2,
#' eta = 1,
#' nthread = nthread,
#' objective = "binary:logistic"
#' )
Expand Down
1 change: 0 additions & 1 deletion R-package/R/xgb.save.raw.R
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,6 @@
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 2,
#' eta = 1,
#' nthread = nthread,
#' objective = "binary:logistic"
#' )
Expand Down
8 changes: 3 additions & 5 deletions R-package/R/xgb.train.R
Original file line number Diff line number Diff line change
Expand Up @@ -150,7 +150,6 @@
#' ## A simple xgb.train example:
#' param <- xgb.params(
#' max_depth = 2,
#' eta = 1,
#' nthread = nthread,
#' objective = "binary:logistic",
#' eval_metric = "auc"
Expand All @@ -176,7 +175,6 @@
#' # 'eval_metric' parameters in the params list:
#' param <- xgb.params(
#' max_depth = 2,
#' eta = 1,
#' nthread = nthread,
#' objective = logregobj,
#' eval_metric = evalerror
Expand All @@ -194,20 +192,20 @@
#' ## An xgb.train example of using variable learning rates at each iteration:
#' param <- xgb.params(
#' max_depth = 2,
#' eta = 1,
#' learning_rate = 1,
#' nthread = nthread,
#' objective = "binary:logistic",
#' eval_metric = "auc"
#' )
#' my_etas <- list(eta = c(0.5, 0.1))
#' my_learning_rates <- list(learning_rate = c(0.5, 0.1))
#'
#' bst <- xgb.train(
#' param,
#' dtrain,
#' nrounds = 2,
#' evals = evals,
#' verbose = 0,
#' callbacks = list(xgb.cb.reset.parameters(my_etas))
#' callbacks = list(xgb.cb.reset.parameters(my_learning_rates))
#' )
#'
#' ## Early stopping:
Expand Down
1 change: 0 additions & 1 deletion R-package/man/a-compatibility-note-for-saveRDS-save.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

3 changes: 0 additions & 3 deletions R-package/man/predict.xgb.Booster.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 0 additions & 1 deletion R-package/man/print.xgb.Booster.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 0 additions & 1 deletion R-package/man/print.xgb.cv.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 0 additions & 1 deletion R-package/man/xgb.attr.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading
Loading