Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[GraphBolt][CUDA] rank_sort_async for Cooperative Minibatching. #7805

Merged
merged 3 commits into from
Sep 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions graphbolt/src/cuda/cooperative_minibatching_utils.cu
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
#include <cub/cub.cuh>
#include <cuda/functional>

#include "../utils.h"
#include "./common.h"
#include "./cooperative_minibatching_utils.cuh"
#include "./cooperative_minibatching_utils.h"
Expand Down Expand Up @@ -144,5 +145,15 @@ std::vector<std::tuple<torch::Tensor, torch::Tensor, torch::Tensor>> RankSort(
return results;
}

c10::intrusive_ptr<Future<
std::vector<std::tuple<torch::Tensor, torch::Tensor, torch::Tensor>>>>
RankSortAsync(
const std::vector<torch::Tensor>& nodes_list, const int64_t rank,
const int64_t world_size) {
return async(
[=] { return RankSort(nodes_list, rank, world_size); },
utils::is_on_gpu(nodes_list.at(0)));
}

} // namespace cuda
} // namespace graphbolt
7 changes: 7 additions & 0 deletions graphbolt/src/cuda/cooperative_minibatching_utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
#define GRAPHBOLT_CUDA_COOPERATIVE_MINIBATCHING_UTILS_H_

#include <ATen/cuda/CUDAEvent.h>
#include <graphbolt/async.h>
#include <torch/script.h>

namespace graphbolt {
Expand Down Expand Up @@ -83,6 +84,12 @@ std::vector<std::tuple<torch::Tensor, torch::Tensor, torch::Tensor>> RankSort(
const std::vector<torch::Tensor>& nodes_list, int64_t rank,
int64_t world_size);

c10::intrusive_ptr<Future<
std::vector<std::tuple<torch::Tensor, torch::Tensor, torch::Tensor>>>>
RankSortAsync(
const std::vector<torch::Tensor>& nodes_list, const int64_t rank,
const int64_t world_size);

} // namespace cuda
} // namespace graphbolt

Expand Down
8 changes: 8 additions & 0 deletions graphbolt/src/python_binding.cc
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,13 @@ TORCH_LIBRARY(graphbolt, m) {
&Future<std::vector<std::tuple<
torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>>>::
Wait);
m.class_<Future<
std::vector<std::tuple<torch::Tensor, torch::Tensor, torch::Tensor>>>>(
"RankSortFuture")
.def(
"wait",
&Future<std::vector<
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor>>>::Wait);
m.class_<Future<std::tuple<torch::Tensor, torch::Tensor, int64_t, int64_t>>>(
"GpuGraphCacheQueryFuture")
.def(
Expand Down Expand Up @@ -198,6 +205,7 @@ TORCH_LIBRARY(graphbolt, m) {
#ifdef GRAPHBOLT_USE_CUDA
m.def("set_max_uva_threads", &cuda::set_max_uva_threads);
m.def("rank_sort", &cuda::RankSort);
m.def("rank_sort_async", &cuda::RankSortAsync);
#endif
#ifdef HAS_IMPL_ABSTRACT_PYSTUB
m.impl_abstract_pystub("dgl.graphbolt.base", "//dgl.graphbolt.base");
Expand Down
34 changes: 24 additions & 10 deletions python/dgl/graphbolt/subgraph_sampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -140,6 +140,9 @@ def __init__(
if cooperative:
datapipe = datapipe.transform(self._seeds_cooperative_exchange_1)
datapipe = datapipe.buffer()
datapipe = datapipe.transform(
self._seeds_cooperative_exchange_1_wait_future
).buffer()
datapipe = datapipe.transform(self._seeds_cooperative_exchange_2)
datapipe = datapipe.buffer()
datapipe = datapipe.transform(self._seeds_cooperative_exchange_3)
Expand Down Expand Up @@ -193,19 +196,32 @@ def _wait_preprocess_future(minibatch, cooperative: bool):
return minibatch

@staticmethod
def _seeds_cooperative_exchange_1(minibatch, group=None):
rank = thd.get_rank(group)
world_size = thd.get_world_size(group)
def _seeds_cooperative_exchange_1(minibatch):
rank = thd.get_rank()
world_size = thd.get_world_size()
seeds = minibatch._seed_nodes
is_homogeneous = not isinstance(seeds, dict)
if is_homogeneous:
seeds = {"_N": seeds}
if minibatch._seeds_offsets is None:
seeds_list = list(seeds.values())
result = torch.ops.graphbolt.rank_sort(seeds_list, rank, world_size)
assert minibatch.compacted_seeds is None
minibatch._rank_sort_future = torch.ops.graphbolt.rank_sort_async(
list(seeds.values()), rank, world_size
)
return minibatch

@staticmethod
def _seeds_cooperative_exchange_1_wait_future(minibatch):
world_size = thd.get_world_size()
seeds = minibatch._seed_nodes
is_homogeneous = not isinstance(seeds, dict)
if is_homogeneous:
seeds = {"_N": seeds}
num_ntypes = len(seeds.keys())
if minibatch._seeds_offsets is None:
result = minibatch._rank_sort_future.wait()
delattr(minibatch, "_rank_sort_future")
sorted_seeds, sorted_compacted, sorted_offsets = {}, {}, {}
num_ntypes = len(seeds.keys())
for i, (
seed_type,
(typed_sorted_seeds, typed_index, typed_offsets),
Expand All @@ -229,16 +245,15 @@ def _seeds_cooperative_exchange_1(minibatch, group=None):
minibatch._counts_future = all_to_all(
counts_received.split(num_ntypes),
counts_sent.split(num_ntypes),
group=group,
async_op=True,
)
minibatch._counts_sent = counts_sent
minibatch._counts_received = counts_received
return minibatch

@staticmethod
def _seeds_cooperative_exchange_2(minibatch, group=None):
world_size = thd.get_world_size(group)
def _seeds_cooperative_exchange_2(minibatch):
world_size = thd.get_world_size()
seeds = minibatch._seed_nodes
minibatch._counts_future.wait()
delattr(minibatch, "_counts_future")
Expand All @@ -256,7 +271,6 @@ def _seeds_cooperative_exchange_2(minibatch, group=None):
all_to_all(
typed_seeds_received.split(typed_counts_received),
typed_seeds.split(typed_counts_sent),
group,
)
seeds_received[ntype] = typed_seeds_received
counts_sent[ntype] = typed_counts_sent
Expand Down
4 changes: 2 additions & 2 deletions tests/python/pytorch/graphbolt/test_dataloader.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,8 +163,8 @@ def test_gpu_sampling_DataLoader(
if enable_feature_fetch:
bufferer_cnt += 1 # feature fetch has 1.
if cooperative:
# _preprocess stage and each sampling layer.
bufferer_cnt += 3
# _preprocess stage.
bufferer_cnt += 4
datapipe_graph = traverse_dps(dataloader)
bufferers = find_dps(
datapipe_graph,
Expand Down
Loading