Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

WIP: Training scripts #3

Draft
wants to merge 4 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
255 changes: 255 additions & 0 deletions scripts/train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,255 @@
#!/usr/bin/env python
import fire
import matplotlib.pyplot as plt
import numpy as np

# import pandas as pd
# import pathlib
# from sklearn.model_selection import train_test_split
# import sys
import tensorflow as tf

# from tqdm.auto import tqdm

import tails.models
from tails.utils import log


def fnr_vs_fpr(predictions, ground_truth):
rbbins = np.arange(-0.0001, 1.0001, 0.0001)
h_b, e_b = np.histogram(predictions[ground_truth == 0], bins=rbbins, density=True)
h_b_c = np.cumsum(h_b)
h_r, e_r = np.histogram(predictions[ground_truth == 1], bins=rbbins, density=True)
h_r_c = np.cumsum(h_r)

# h_b, e_b
print(sum(ground_truth == 0), sum(ground_truth == 1))

fig = plt.figure(figsize=(9, 4), dpi=200)
ax = fig.add_subplot(111)

rb_thres = np.array(list(range(len(h_b)))) / len(h_b)

ax.plot(
rb_thres,
h_r_c / np.max(h_r_c),
label="False Negative Rate (FNR)",
linewidth=1.5,
)
ax.plot(
rb_thres,
1 - h_b_c / np.max(h_b_c),
label="False Positive Rate (FPR)",
linewidth=1.5,
)

mmce = (h_r_c / np.max(h_r_c) + 1 - h_b_c / np.max(h_b_c)) / 2
ax.plot(
rb_thres,
mmce,
"--",
label="Mean misclassification error",
color="gray",
linewidth=1.5,
)

ax.set_xlim([-0.05, 1.05])

ax.set_xticks(np.arange(0, 1.1, 0.1))
ax.set_yticks(np.arange(0, 1.1, 0.1))

# vals = ax.get_yticks()
# ax.set_yticklabels(['{:,.0%}'.format(x) for x in vals])

ax.set_yscale("log")
ax.set_ylim([5e-4, 1])
vals = ax.get_yticks()
ax.set_yticklabels(
["{:,.1%}".format(x) if x < 0.01 else "{:,.0%}".format(x) for x in vals]
)

# thresholds:
# thrs = [0.5, ]
thrs = [0.5, 0.7]
for t in thrs:
m_t = rb_thres < t
fnr = np.array(h_r_c / np.max(h_r_c))[m_t][-1]
fpr = np.array(1 - h_b_c / np.max(h_b_c))[m_t][-1]
print(t, fnr * 100, fpr * 100)
# ax.vlines(t_1, 0, 1.1)
ax.vlines(t, 0, max(fnr, fpr))
ax.text(
t - 0.05,
max(fnr, fpr) + 0.01,
f" {fnr*100:.1f}% FNR\n {fpr*100:.1f}% FPR",
fontsize=10,
)

ax.set_xlabel("$p_c$ score threshold")
ax.set_ylabel("Cumulative percentage")
ax.legend(loc="upper center")
ax.grid(True, which="major", linewidth=0.5)
ax.grid(True, which="minor", linewidth=0.3)
plt.tight_layout()
plt.show()


class TailsLoss(tf.keras.losses.BinaryCrossentropy):
def __init__(self, w_1: float = 1, w_2: float = 1, **kwargs):
super(TailsLoss, self).__init__(**kwargs)
self.w_1 = w_1
self.w_2 = w_2

def call(self, y_true, y_pred):
output = tf.convert_to_tensor(y_pred[..., 0])
target = tf.cast(y_true[..., 0], output.dtype)

# l_1: binary crossentropy for the label
l_1 = super(TailsLoss, self).call(target, output)
w_1 = tf.cast(self.w_1, output.dtype)
l_1 = tf.math.multiply(l_1, w_1)

# l_2: L1 loss
l_2 = tf.norm(y_pred[..., 1:] - y_true[..., 1:], ord=1)

# l_2: L1 loss + L2 regularization
# l_2 = tf.norm(y_pred[..., 1:] - y_true[..., 1:], ord=1) + \
# 1e-3 * tf.norm(y_pred[..., 1:] - y_true[..., 1:], ord=2)

l_2 = tf.math.multiply(l_2, target)
l_2 = tf.math.divide(l_2, tf.math.reduce_sum(target))
w_2 = tf.cast(self.w_2, output.dtype)
l_2 = tf.math.multiply(l_2, w_2)

return l_1 + l_2


class LabelAccuracy(tf.keras.metrics.Metric):
def __init__(self, name="label_accuracy", threshold=0.5, **kwargs):
super(LabelAccuracy, self).__init__(name=name, **kwargs)
self.total = self.add_weight(name="total", initializer="zeros")
self.count = self.add_weight(name="count", initializer="zeros")
self.threshold = float(threshold)

def update_state(self, y_true, y_pred, sample_weight=None):
output = y_pred[..., 0]
# target = tf.cast(y_true[..., 0], output.dtype)
target = tf.cast(y_true[..., 0], tf.bool)

threshold = tf.cast(0.5, output.dtype)
output = tf.cast(output > threshold, tf.bool)

# values = tf.cast(tf.math.equal(target, output), output.dtype)
values = tf.cast(tf.math.equal(target, output), tf.float32)
ones = tf.cast(tf.math.equal(target, target), tf.float32)

if sample_weight is not None:
sample_weight = tf.cast(sample_weight, self.dtype)
sample_weight = tf.broadcast_weights(sample_weight, values)
values = tf.multiply(values, sample_weight)

self.count.assign_add(tf.math.reduce_sum(values, axis=-1))
self.total.assign_add(tf.math.reduce_sum(ones, axis=-1))

def result(self):
return tf.math.divide(self.count, self.total)


class PositionRootMeanSquarredError(tf.keras.metrics.Metric):
def __init__(self, name="position_rmse", scaling_factor=1, **kwargs):
super(PositionRootMeanSquarredError, self).__init__(name=name, **kwargs)
self.total = self.add_weight(name="total", initializer="zeros")
self.rmse = self.add_weight(name="rmse", initializer="zeros")
self.scaling_factor = float(scaling_factor)

def update_state(self, y_true, y_pred, sample_weight=None):
output = y_pred[..., 1:]
target = tf.cast(y_true[..., 1:], output.dtype)
label = tf.cast(y_true[..., 0], output.dtype)

rmse = tf.math.reduce_mean(
tf.math.sqrt(tf.math.squared_difference(output, target)), axis=-1
)
# only take positive examples into account:
rmse = tf.math.multiply(rmse, label)

self.rmse.assign_add(tf.math.reduce_sum(rmse, axis=-1))
# only count the positive examples:
self.total.assign_add(tf.math.reduce_sum(label, axis=-1))

def result(self):
sf = tf.constant(self.scaling_factor, dtype=self.rmse.dtype.base_dtype)
return tf.math.multiply(sf, tf.math.divide(self.rmse, self.total))


def train_and_eval(
train_dataset,
val_dataset,
test_dataset,
steps_per_epoch_train,
steps_per_epoch_val,
epochs,
class_weight,
model_name: str = "tails",
tag="20210101",
w_1: float = 1.2,
w_2: float = 1,
class_threshold: float = 0.5,
scaling_factor=256,
input_shape=(256, 256, 3),
weights: str = None,
save_model=False,
verbose=False,
**kwargs,
):
classifier = tails.models.DNN(name=model_name)

tails_loss = TailsLoss(name="loss", w_1=w_1, w_2=w_2)
label_accuracy = LabelAccuracy(threshold=class_threshold)
# convert position RMSE to pixels
position_rmse = PositionRootMeanSquarredError(scaling_factor=scaling_factor)

learning_rate = kwargs.get("learning_rate", 3e-4)
patience = kwargs.get("patience", 30)

classifier.setup(
input_shape=input_shape,
n_output_neurons=3,
architecture="tails",
loss=tails_loss,
optimizer="adam",
lr=learning_rate, # epsilon=1e-3, beta_1=0.7,
metrics=[label_accuracy, position_rmse],
patience=patience,
monitor="val_position_rmse",
restore_best_weights=True,
callbacks=("early_stopping", "learning_rate_scheduler" "tensorboard"),
tag=tag,
logdir="logs",
)

# pre-load weights?
if weights is not None:
classifier.model.load_weights(weights)

classifier.train(
train_dataset,
val_dataset,
steps_per_epoch_train,
steps_per_epoch_val,
epochs=epochs,
class_weight=class_weight,
verbose=True,
)

# evaluate
stats = classifier.evaluate(test_dataset)
if verbose:
log(stats)

if save_model:
classifier.model.save_weights(f"{model_name}-{tag}")


if __name__ == "__main__":
fire.Fire(train_and_eval)
36 changes: 35 additions & 1 deletion tails/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ def setup(
architecture="efficientnetb0",
loss="binary_crossentropy",
optimizer="adam",
callbacks=("early_stopping", "tensorboard"),
callbacks=("early_stopping", "learning_rate_scheduler", "tensorboard"),
tag=None,
logdir="logs",
**kwargs,
Expand Down Expand Up @@ -133,6 +133,40 @@ def setup(
)
self.meta["callbacks"].append(early_stopping_callback)

elif callback == "reduce_lr_on_plateau":
tf.keras.callbacks.ReduceLROnPlateau(
monitor="val_loss",
factor=0.1,
patience=10,
verbose=0,
mode="auto",
min_delta=0.0001,
cooldown=0,
min_lr=0,
**kwargs,
)

raise NotImplementedError("Implement ReduceLROnPlateau")

elif callback == "learning_rate_scheduler":
learning_rate_decay_min_epoch = kwargs.get(
"learning_rate_decay_min_epoch", 30
)
learning_rate_decay_index = kwargs.get(
"learning_rate_decay_index", -0.1
)

def scheduler(epoch, lr):
if epoch < learning_rate_decay_min_epoch:
return lr
else:
return lr * tf.math.exp(learning_rate_decay_index)

learning_rate_scheduler_callback = (
tf.keras.callbacks.LearningRateScheduler(scheduler)
)
self.meta["callbacks"].append(learning_rate_scheduler_callback)

elif callback == "tensorboard":
# logs for TensorBoard:
if tag:
Expand Down