Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

16 fix failing actions #18

Merged
merged 4 commits into from
Nov 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 0 additions & 23 deletions .github/workflows/build.yml
Original file line number Diff line number Diff line change
Expand Up @@ -42,26 +42,3 @@ jobs:
- uses: ./.github/actions/install-test-and-build
with:
python-version: ${{ matrix.python-version }}

lint:
name: Linting build
runs-on: ubuntu-latest
strategy:
fail-fast: false
steps:
- uses: actions/checkout@v3
- name: Set up Python 3.11
uses: actions/setup-python@v3
with:
python-version: 3.11
- name: Python info
shell: bash -e {0}
run: |
which python3
python3 --version
- name: Upgrade pip and install dependencies
run: |
python3 -m pip install --upgrade pip setuptools
python3 -m pip install .[dev,publishing]
- name: Check style against standards using ruff
run: ruff .
5 changes: 4 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,10 @@

# `distance_explainer`

XAI method to explain distances in embedded spaces
XAI method to explain distances in embedded spaces.

![overview schema](https://github.com/user-attachments/assets/bbd5a79c-c50b-47a2-89fc-d8ed3053c845)


## Installation

Expand Down
54 changes: 40 additions & 14 deletions tests/test_distance.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@ def set_all_the_seeds(seed_value=0):
os.environ['PYTHONHASHSEED'] = str(seed_value)
np.random.seed(seed_value)


@pytest.fixture()
def dummy_model() -> Callable:
"""Get a dummy model that returns a random embedding for every input in a batch."""
Expand Down Expand Up @@ -46,41 +47,66 @@ def get_explainer(config: Config, axis_labels={2: 'channels'}, preprocess_functi
return explainer


def test_distance_explainer(dummy_data: tuple[ArrayLike, ArrayLike],
dummy_model: Callable):
"""Code output should be identical to recorded output."""
def test_distance_explainer_saliency(dummy_data: tuple[ArrayLike, ArrayLike],
dummy_model: Callable):
"""Code output should be identical to recorded saliency."""
embedded_reference, input_arr = dummy_data
explainer = get_explainer(get_default_config())
expected_saliency, expected_value = np.load('./tests/test_data/test_dummy_data_exact_expected_output.npz').values()

saliency, value = explainer.explain_image_distance(dummy_model, input_arr, embedded_reference)

assert saliency.shape == (1,) + input_arr.shape[:2] + (1,) # Has correct shape
assert np.allclose(expected_saliency, saliency) # Has correct saliency


@pytest.mark.skip("See 'neutral value not correct #19', https://github.com/dianna-ai/distance_explainer/issues/19")
def test_distance_explainer_value(dummy_data: tuple[ArrayLike, ArrayLike],
dummy_model: Callable):
"""Code output should be identical to recorded value."""
embedded_reference, input_arr = dummy_data
explainer = get_explainer(get_default_config())
expected_saliency, expected_value = np.load('./tests/test_data/test_dummy_data_exact_expected_output.npz').values()
assert np.allclose(expected_saliency, saliency) # Has correct value

saliency, value = explainer.explain_image_distance(dummy_model, input_arr, embedded_reference)

assert np.allclose(expected_value, value) # Has correct value


@pytest.mark.parametrize("empty_side,expected_tag",
[({"mask_selection_range_max": 0.}, "pos_empty"),
({"mask_selection_negative_range_min": 1.}, "neg_empty")])
def test_distance_explainer_one_sided(dummy_data: tuple[ArrayLike, ArrayLike],
dummy_model: Callable,
empty_side: dict[str, float],
expected_tag: str):
"""Code output should be identical to recorded output."""
def test_distance_explainer_one_sided_saliency(dummy_data: tuple[ArrayLike, ArrayLike],
dummy_model: Callable,
empty_side: dict[str, float],
expected_tag: str):
"""Code output should be identical to recorded saliency."""
embedded_reference, input_arr = dummy_data

expected_saliency, expected_value = np.load(
f'./tests/test_data/test_dummy_data_exact_expected_output_{expected_tag}.npz').values()
config = dataclasses.replace(get_default_config(), **empty_side)
explainer = get_explainer(config)

saliency, value = explainer.explain_image_distance(dummy_model, input_arr, embedded_reference)

assert saliency.shape == (1,) + input_arr.shape[:2] + (1,) # Has correct shape
assert np.allclose(expected_saliency, saliency) # Has correct saliency


# np.savez(f'./tests/test_data/test_dummy_data_exact_expected_output_{expected_tag}.npz',
# expected_saliency=saliency, expected_value=value)
@pytest.mark.skip("See 'neutral value not correct #19', https://github.com/dianna-ai/distance_explainer/issues/19")
@pytest.mark.parametrize("empty_side,expected_tag",
[({"mask_selection_range_max": 0.}, "pos_empty"),
({"mask_selection_negative_range_min": 1.}, "neg_empty")])
def test_distance_explainer_one_sided_value(dummy_data: tuple[ArrayLike, ArrayLike],
dummy_model: Callable,
empty_side: dict[str, float],
expected_tag: str):
"""Code output should be identical to recorded saliency."""
embedded_reference, input_arr = dummy_data
expected_saliency, expected_value = np.load(
f'./tests/test_data/test_dummy_data_exact_expected_output_{expected_tag}.npz').values()
assert np.allclose(expected_saliency, saliency) # Has correct value
config = dataclasses.replace(get_default_config(), **empty_side)
explainer = get_explainer(config)

saliency, value = explainer.explain_image_distance(dummy_model, input_arr, embedded_reference)

assert np.allclose(expected_value, value) # Has correct value
Loading