Skip to content

Commit

Permalink
Fix ProMP references
Browse files Browse the repository at this point in the history
  • Loading branch information
AlexanderFabisch committed Nov 28, 2023
1 parent bb7bab4 commit c50bf6f
Showing 1 changed file with 24 additions and 23 deletions.
47 changes: 24 additions & 23 deletions movement_primitives/promp.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,9 @@
class ProMP:
"""Probabilistic Movement Primitive (ProMP).
ProMPs have been proposed first in [1] and have been used later in [2,3].
The learning algorithm is a specialized form of the one presented in [4].
ProMPs have been proposed first in [1]_ and have been used later in [2]_,
[3]_. The learning algorithm is a specialized form of the one presented in
[4]_.
Note that internally we represented trajectories with the task space
dimension as the first axis and the time step as the second axis while
Expand All @@ -28,27 +29,27 @@ class ProMP:
References
----------
[1] Paraschos, A., Daniel, C., Peters, J., Neumann, G. (2013).
Probabilistic movement primitives, In C.J. Burges and L. Bottou and M.
Welling and Z. Ghahramani and K.Q. Weinberger (Eds.), Advances in Neural
Information Processing Systems, 26,
https://papers.nips.cc/paper/2013/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
[3] Maeda, G. J., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O.,
Peters, J. (2017). Probabilistic movement primitives for coordination of
multiple human–robot collaborative tasks. Autonomous Robots, 41, 593-612.
DOI: 10.1007/s10514-016-9556-2,
https://link.springer.com/article/10.1007/s10514-016-9556-2
[2] Paraschos, A., Daniel, C., Peters, J., Neumann, G. (2018).
Using probabilistic movement primitives in robotics. Autonomous Robots, 42,
529-551. DOI: 10.1007/s10514-017-9648-7,
https://www.ias.informatik.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/promps_auro.pdf
[4] Lazaric, A., Ghavamzadeh, M. (2010).
Bayesian Multi-Task Reinforcement Learning. In Proceedings of the 27th
International Conference on International Conference on Machine Learning
(ICML'10) (pp. 599-606). https://hal.inria.fr/inria-00475214/document
.. [1] Paraschos, A., Daniel, C., Peters, J., Neumann, G. (2013).
Probabilistic movement primitives, In C.J. Burges and L. Bottou and M.
Welling and Z. Ghahramani and K.Q. Weinberger (Eds.), Advances in Neural
Information Processing Systems, 26,
https://papers.nips.cc/paper/2013/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
.. [3] Maeda, G. J., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O.,
Peters, J. (2017). Probabilistic movement primitives for coordination of
multiple human–robot collaborative tasks. Autonomous Robots, 41, 593-612.
DOI: 10.1007/s10514-016-9556-2,
https://link.springer.com/article/10.1007/s10514-016-9556-2
.. [2] Paraschos, A., Daniel, C., Peters, J., Neumann, G. (2018).
Using probabilistic movement primitives in robotics. Autonomous Robots,
42, 529-551. DOI: 10.1007/s10514-017-9648-7,
https://www.ias.informatik.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/promps_auro.pdf
.. [4] Lazaric, A., Ghavamzadeh, M. (2010).
Bayesian Multi-Task Reinforcement Learning. In Proceedings of the 27th
International Conference on International Conference on Machine Learning
(ICML'10) (pp. 599-606). https://hal.inria.fr/inria-00475214/document
"""
def __init__(self, n_dims, n_weights_per_dim=10):
self.n_dims = n_dims
Expand Down

0 comments on commit c50bf6f

Please sign in to comment.