Skip to content

Commit

Permalink
Unify literature references
Browse files Browse the repository at this point in the history
  • Loading branch information
AlexanderFabisch committed Nov 28, 2023
1 parent 36892d7 commit 583c763
Show file tree
Hide file tree
Showing 8 changed files with 115 additions and 46 deletions.
60 changes: 60 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -282,6 +282,66 @@ git clone [email protected]:motto/abstract-urdf-gripper.git --recursive
I assume that your data is located in the folder `data/` in most scripts.
You should put a symlink there to point to your actual data folder.

## Related Publications

[1] Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S. (2013).
Dynamical Movement Primitives: Learning Attractor Models for Motor
Behaviors, Neural Computation 25 (2), 328-373. DOI: 10.1162/NECO_a_00393,
https://homes.cs.washington.edu/~todorov/courses/amath579/reading/DynamicPrimitives.pdf

[2] Pastor, P., Hoffmann, H., Asfour, T., Schaal, S. (2009).
Learning and Generalization of Motor Skills by Learning from Demonstration.
In 2009 IEEE International Conference on Robotics and Automation,
(pp. 763-768). DOI: 10.1109/ROBOT.2009.5152385,
https://h2t.iar.kit.edu/pdf/Pastor2009.pdf

[3] Muelling, K., Kober, J., Kroemer, O., Peters, J. (2013).
Learning to Select and Generalize Striking Movements in Robot Table Tennis.
International Journal of Robotics Research 32 (3), 263-279.
https://www.ias.informatik.tu-darmstadt.de/uploads/Publications/Muelling_IJRR_2013.pdf

[4] Ude, A., Nemec, B., Petric, T., Murimoto, J. (2014).
Orientation in Cartesian space dynamic movement primitives.
In IEEE International Conference on Robotics and Automation (ICRA)
(pp. 2997-3004). DOI: 10.1109/ICRA.2014.6907291,
https://acat-project.eu/modules/BibtexModule/uploads/PDF/udenemecpetric2014.pdf

[5] Gams, A., Nemec, B., Zlajpah, L., Wächter, M., Asfour, T., Ude, A. (2013).
Modulation of Motor Primitives using Force Feedback: Interaction with
the Environment and Bimanual Tasks (2013), In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (pp. 5629-5635). DOI:
10.1109/IROS.2013.6697172,
https://h2t.anthropomatik.kit.edu/pdf/Gams2013.pdf

[6] Vidakovic, J., Jerbic, B., Sekoranja, B., Svaco, M., Suligoj, F. (2019).
Task Dependent Trajectory Learning from Multiple Demonstrations Using
Movement Primitives (2019),
In International Conference on Robotics in Alpe-Adria Danube Region (RAAD)
(pp. 275-282). DOI: 10.1007/978-3-030-19648-6_32,
https://link.springer.com/chapter/10.1007/978-3-030-19648-6_32

[7] Paraschos, A., Daniel, C., Peters, J., Neumann, G. (2013).
Probabilistic movement primitives, In C.J. Burges and L. Bottou and M.
Welling and Z. Ghahramani and K.Q. Weinberger (Eds.), Advances in Neural
Information Processing Systems, 26,
https://papers.nips.cc/paper/2013/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf

[8] Maeda, G. J., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O.,
Peters, J. (2017). Probabilistic movement primitives for coordination of
multiple human–robot collaborative tasks. Autonomous Robots, 41, 593-612.
DOI: 10.1007/s10514-016-9556-2,
https://link.springer.com/article/10.1007/s10514-016-9556-2

[9] Paraschos, A., Daniel, C., Peters, J., Neumann, G. (2018).
Using probabilistic movement primitives in robotics. Autonomous Robots, 42,
529-551. DOI: 10.1007/s10514-017-9648-7,
https://www.ias.informatik.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/promps_auro.pdf

[10] Lazaric, A., Ghavamzadeh, M. (2010).
Bayesian Multi-Task Reinforcement Learning. In Proceedings of the 27th
International Conference on International Conference on Machine Learning
(ICML'10) (pp. 599-606). https://hal.inria.fr/inria-00475214/document

## Funding

This library has been developed initially at the
Expand Down
17 changes: 8 additions & 9 deletions movement_primitives/dmp/_cartesian_dmp.py
Original file line number Diff line number Diff line change
Expand Up @@ -157,19 +157,18 @@ class CartesianDMP(DMPBase):
orientation is represented by a quaternion. The quaternion DMP is
implemented according to
A. Ude, B. Nemec, T. Petric, J. Murimoto:
Orientation in Cartesian space dynamic movement primitives (2014),
IEEE International Conference on Robotics and Automation (ICRA),
pp. 2997-3004, doi: 10.1109/ICRA.2014.6907291,
https://ieeexplore.ieee.org/document/6907291,
Ude, A., Nemec, B., Petric, T., Murimoto, J. (2014).
Orientation in Cartesian space dynamic movement primitives.
In IEEE International Conference on Robotics and Automation (ICRA)
(pp. 2997-3004). DOI: 10.1109/ICRA.2014.6907291,
https://acat-project.eu/modules/BibtexModule/uploads/PDF/udenemecpetric2014.pdf
(if smooth scaling is activated) with modification of scaling proposed by
P. Pastor, H. Hoffmann, T. Asfour, S. Schaal:
Learning and Generalization of Motor Skills by Learning from Demonstration,
2009 IEEE International Conference on Robotics and Automation,
Kobe, Japan, 2009, pp. 763-768, doi: 10.1109/ROBOT.2009.5152385,
Pastor, P., Hoffmann, H., Asfour, T., Schaal, S. (2009).
Learning and Generalization of Motor Skills by Learning from Demonstration.
In 2009 IEEE International Conference on Robotics and Automation,
(pp. 763-768). DOI: 10.1109/ROBOT.2009.5152385,
https://h2t.iar.kit.edu/pdf/Pastor2009.pdf
While the dimension of the state space is 7, the dimension of the
Expand Down
17 changes: 10 additions & 7 deletions movement_primitives/dmp/_coupling_terms.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,10 +125,9 @@ class CouplingTermObstacleAvoidance3D: # for DMP
Implementation according to
A.J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal:
Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S. (2013).
Dynamical Movement Primitives: Learning Attractor Models for Motor
Behaviors (2013), Neural Computation 25(2), pp. 328-373, doi:
10.1162/NECO_a_00393, https://ieeexplore.ieee.org/document/6797340,
Behaviors. Neural Computation 25 (2), 328-373. DOI: 10.1162/NECO_a_00393,
https://homes.cs.washington.edu/~todorov/courses/amath579/reading/DynamicPrimitives.pdf
This coupling term adds an acceleration
Expand Down Expand Up @@ -236,9 +235,11 @@ class CouplingTermPos1DToPos1D:
For :class:`DMP` and :class:`DMPWithFinalVelocity`.
A. Gams, B. Nemec, L. Zlajpah, M. Wächter, T. Asfour, A. Ude:
Gams, A., Nemec, B., Zlajpah, L., Wächter, M., Asfour, T., Ude, A. (2013).
Modulation of Motor Primitives using Force Feedback: Interaction with
the Environment and Bimanual Tasks (2013), IROS,
the Environment and Bimanual Tasks (2013), In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (pp. 5629-5635). DOI:
10.1109/IROS.2013.6697172,
https://h2t.anthropomatik.kit.edu/pdf/Gams2013.pdf
Parameters
Expand Down Expand Up @@ -289,9 +290,11 @@ class CouplingTermPos3DToPos3D:
For :class:`DMP` and :class:`DMPWithFinalVelocity`.
A. Gams, B. Nemec, L. Zlajpah, M. Wächter, T. Asfour, A. Ude:
Gams, A., Nemec, B., Zlajpah, L., Wächter, M., Asfour, T., Ude, A. (2013).
Modulation of Motor Primitives using Force Feedback: Interaction with
the Environment and Bimanual Tasks (2013), IROS,
the Environment and Bimanual Tasks (2013), In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (pp. 5629-5635). DOI:
10.1109/IROS.2013.6697172,
https://h2t.anthropomatik.kit.edu/pdf/Gams2013.pdf
Parameters
Expand Down
13 changes: 6 additions & 7 deletions movement_primitives/dmp/_dmp.py
Original file line number Diff line number Diff line change
Expand Up @@ -344,18 +344,17 @@ class DMP(WeightParametersMixin, DMPBase):
Implementation according to
A.J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal:
Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S. (2013).
Dynamical Movement Primitives: Learning Attractor Models for Motor
Behaviors (2013), Neural Computation 25(2), pp. 328-373, doi:
10.1162/NECO_a_00393, https://ieeexplore.ieee.org/document/6797340,
Behaviors. Neural Computation 25 (2), 328-373. DOI: 10.1162/NECO_a_00393,
https://homes.cs.washington.edu/~todorov/courses/amath579/reading/DynamicPrimitives.pdf
(if smooth scaling is activated) with modification of scaling proposed by
P. Pastor, H. Hoffmann, T. Asfour, S. Schaal:
Learning and Generalization of Motor Skills by Learning from Demonstration,
2009 IEEE International Conference on Robotics and Automation,
Kobe, Japan, 2009, pp. 763-768, doi: 10.1109/ROBOT.2009.5152385,
Pastor, P., Hoffmann, H., Asfour, T., Schaal, S. (2009).
Learning and Generalization of Motor Skills by Learning from Demonstration.
In 2009 IEEE International Conference on Robotics and Automation,
(pp. 763-768). DOI: 10.1109/ROBOT.2009.5152385,
https://h2t.iar.kit.edu/pdf/Pastor2009.pdf
Equation of transformation system (Ijspeert et al. 2013, Eq. 2.1):
Expand Down
6 changes: 3 additions & 3 deletions movement_primitives/dmp/_dmp_with_final_velocity.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,9 @@ class DMPWithFinalVelocity(WeightParametersMixin, DMPBase):
Implementation according to
K. Muelling, J. Kober, O. Kroemer, J. Peters:
Learning to Select and Generalize Striking Movements in Robot Table Tennis
(2013), International Journal of Robotics Research 32(3), pp. 263-279,
Muelling, K., Kober, J., Kroemer, O., Peters, J. (2013).
Learning to Select and Generalize Striking Movements in Robot Table Tennis.
International Journal of Robotics Research 32 (3), 263-279.
https://www.ias.informatik.tu-darmstadt.de/uploads/Publications/Muelling_IJRR_2013.pdf
Equation of transformation system (Muelling et al. 2013, Eq. 6):
Expand Down
18 changes: 9 additions & 9 deletions movement_primitives/dmp/_dual_cartesian_dmp.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,18 +177,18 @@ class DualCartesianDMP(WeightParametersMixin, DMPBase):
The orientation is represented by a quaternion. The quaternion DMP is
implemented according to
A. Ude, B. Nemec, T. Petric, J. Murimoto:
Orientation in Cartesian space dynamic movement primitives (2014),
IEEE International Conference on Robotics and Automation (ICRA),
pp. 2997-3004, doi: 10.1109/ICRA.2014.6907291,
https://ieeexplore.ieee.org/document/6907291
Ude, A., Nemec, B., Petric, T., Murimoto, J. (2014).
Orientation in Cartesian space dynamic movement primitives.
In IEEE International Conference on Robotics and Automation (ICRA)
(pp. 2997-3004). DOI: 10.1109/ICRA.2014.6907291,
https://acat-project.eu/modules/BibtexModule/uploads/PDF/udenemecpetric2014.pdf
(if smooth scaling is activated) with modification of scaling proposed by
P. Pastor, H. Hoffmann, T. Asfour, S. Schaal:
Learning and Generalization of Motor Skills by Learning from Demonstration,
2009 IEEE International Conference on Robotics and Automation,
Kobe, Japan, 2009, pp. 763-768, doi: 10.1109/ROBOT.2009.5152385,
Pastor, P., Hoffmann, H., Asfour, T., Schaal, S. (2009).
Learning and Generalization of Motor Skills by Learning from Demonstration.
In 2009 IEEE International Conference on Robotics and Automation,
(pp. 763-768). DOI: 10.1109/ROBOT.2009.5152385,
https://h2t.iar.kit.edu/pdf/Pastor2009.pdf
While the dimension of the state space is 14, the dimension of the
Expand Down
6 changes: 3 additions & 3 deletions movement_primitives/dmp/_state_following_dmp.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,11 +9,11 @@ class StateFollowingDMP(WeightParametersMixin, DMPBase):
The DMP variant that is implemented here is described in
J. Vidakovic, B. Jerbic, B. Sekoranja, M. Svaco, F. Suligoj:
Vidakovic, J., Jerbic, B., Sekoranja, B., Svaco, M., Suligoj, F. (2019).
Task Dependent Trajectory Learning from Multiple Demonstrations Using
Movement Primitives (2019),
International Conference on Robotics in Alpe-Adria Danube Region (RAAD),
pp. 275-282, doi: 10.1007/978-3-030-19648-6_32,
In International Conference on Robotics in Alpe-Adria Danube Region (RAAD)
(pp. 275-282). DOI: 10.1007/978-3-030-19648-6_32,
https://link.springer.com/chapter/10.1007/978-3-030-19648-6_32
Attributes
Expand Down
24 changes: 16 additions & 8 deletions movement_primitives/promp.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,19 +28,27 @@ class ProMP:
References
----------
[1] Paraschos et al.: Probabilistic movement primitives, NeurIPS (2013),
[1] Paraschos, A., Daniel, C., Peters, J., Neumann, G. (2013).
Probabilistic movement primitives, In C.J. Burges and L. Bottou and M.
Welling and Z. Ghahramani and K.Q. Weinberger (Eds.), Advances in Neural
Information Processing Systems, 26,
https://papers.nips.cc/paper/2013/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
[3] Maeda et al.: Probabilistic movement primitives for coordination of
multiple human–robot collaborative tasks, AuRo 2017,
[3] Maeda, G. J., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O.,
Peters, J. (2017). Probabilistic movement primitives for coordination of
multiple human–robot collaborative tasks. Autonomous Robots, 41, 593-612.
DOI: 10.1007/s10514-016-9556-2,
https://link.springer.com/article/10.1007/s10514-016-9556-2
[2] Paraschos et al.: Using probabilistic movement primitives in robotics, AuRo (2018),
https://www.ias.informatik.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/promps_auro.pdf,
https://link.springer.com/article/10.1007/s10514-017-9648-7
[2] Paraschos, A., Daniel, C., Peters, J., Neumann, G. (2018).
Using probabilistic movement primitives in robotics. Autonomous Robots, 42,
529-551. DOI: 10.1007/s10514-017-9648-7,
https://www.ias.informatik.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/promps_auro.pdf
[4] Lazaric et al.: Bayesian Multi-Task Reinforcement Learning, ICML (2010),
https://hal.inria.fr/inria-00475214/document
[4] Lazaric, A., Ghavamzadeh, M. (2010).
Bayesian Multi-Task Reinforcement Learning. In Proceedings of the 27th
International Conference on International Conference on Machine Learning
(ICML'10) (pp. 599-606). https://hal.inria.fr/inria-00475214/document
"""
def __init__(self, n_dims, n_weights_per_dim=10):
self.n_dims = n_dims
Expand Down

0 comments on commit 583c763

Please sign in to comment.