Skip to content

defog-ai/defog

Repository files navigation

defog

A comprehensive Python toolkit for AI-powered data operations - from natural language SQL queries to multi-agent orchestration.

Features

  • πŸ€– Cross-provider LLM operations - Unified interface for OpenAI, Anthropic, Gemini, and Together AI
  • πŸ“Š SQL Agent - Convert natural language to SQL with automatic table filtering for large databases
  • πŸ” Data extraction - Extract structured data from PDFs, images, HTML, text documents, and even images embedded in HTML
  • πŸ› οΈ Advanced AI tools - Code interpreter, web search, YouTube transcription, document citations
  • 🎭 Agent orchestration - Hierarchical task delegation and multi-agent coordination
  • πŸ’Ύ Memory management - Automatic conversation compactification for long contexts

Installation

pip install --upgrade defog

Quick Start

1. LLM Chat (Cross-Provider)

from defog.llm.utils import chat_async
from defog.llm.llm_providers import LLMProvider

# Works with any provider
response = await chat_async(
    provider=LLMProvider.ANTHROPIC,  # or OPENAI, GEMINI
    model="claude-sonnet-4-20250514",
    messages=[{"role": "user", "content": "Hello!"}]
)
print(response.content)

2. Natural Language to SQL

from defog.llm.sql import sql_answer_tool
from defog.llm.llm_providers import LLMProvider

# Ask questions in natural language
result = await sql_answer_tool(
    question="What are the top 10 customers by total sales?",
    db_type="postgres",
    db_creds={
        "host": "localhost",
        "database": "mydb",
        "user": "postgres",
        "password": "password"
    },
    model="claude-sonnet-4-20250514",
    provider=LLMProvider.ANTHROPIC
)

print(f"SQL: {result['query']}")
print(f"Results: {result['results']}")

3. Extract Data from PDFs

from defog.llm import extract_pdf_data

# Extract structured data from any PDF
data = await extract_pdf_data(
    pdf_url="https://example.com/financial_report.pdf",
    focus_areas=["revenue", "financial metrics"]
)

for datapoint_name, extracted_data in data["data"].items():
    print(f"{datapoint_name}: {extracted_data}")

4. Code Interpreter

from defog.llm.code_interp import code_interpreter_tool
from defog.llm.llm_providers import LLMProvider

# Execute Python code with AI assistance
result = await code_interpreter_tool(
    question="Analyze this data and create a visualization",
    csv_string="name,sales\nAlice,100\nBob,150",
    model="gpt-4o",
    provider=LLMProvider.OPENAI
)

print(result["code"])    # Generated Python code
print(result["output"])  # Execution results

Documentation

πŸ“š Full Documentation - Comprehensive guides and API reference

Quick Links

Environment Variables

# API Keys
export OPENAI_API_KEY="your-openai-key"
export ANTHROPIC_API_KEY="your-anthropic-key"
export GEMINI_API_KEY="your-gemini-key"
export TOGETHER_API_KEY="your-together-key"

Advanced Use Cases

For advanced features like:

  • Memory compactification for long conversations
  • YouTube video transcription and summarization
  • Multi-agent orchestration with shared context
  • Database schema auto-documentation
  • Model Context Protocol (MCP) support

See the full documentation.

Development

Testing and formatting

  1. Run tests: python -m pytest tests
  2. Format code: ruff format
  3. Update documentation when adding features

Using our MCP Server

  1. Run defog serve once to complete your setup, and defog db to update your database credentials
  2. Add to your MCP Client
    • Claude Code: claude mcp add defog -- python3 -m defog.mcp_server. Or if you do not want to install the defog package globally or set up environment variables, run claude mcp add dfg -- uv run --directory FULL_PATH_TO_VENV_DIRECTORY --env-file .env -m defog.mcp_server
    • Claude Desktop: add the config below
    {
        "mcpServers": {
            "defog": {
                "command": "python3",
                "args": ["-m", "defog.mcp_server"],
                "env": {
                    "OPENAI_API_KEY": "YOUR_OPENAI_KEY",
                    "ANTHROPIC_API_KEY": "YOUR_ANTHROPIC_KEY",
                    "GEMINI_API_KEY": "YOUR_GEMINI_KEY",
                    "DB_TYPE": "YOUR_DB_TYPE",
                    "DB_HOST": "YOUR_DB_HOST",
                    "DB_PORT": "YOUR_DB_PORT",
                    "DB_USER": "YOUR_DB_USER",
                    "DB_PASSWORD": "YOUR_DB_PASSWORD",
                    "DB_NAME": "YOUR_DB_NAME"
                }
            }
        }
        }

Available MCP Tools and Resources

The Defog MCP server provides the following capabilities:

Tools (actions the AI can perform):

  • text_to_sql_tool - Execute natural language queries against your database
  • list_database_schema - List all tables and their schemas
  • youtube_video_summary - Get transcript/summary of YouTube videos (requires Gemini API key)
  • extract_pdf_data - Extract structured data from PDFs
  • extract_html_data - Extract structured data from HTML pages
  • extract_text_data - Extract structured data from text files

Resources (read-only data the AI can access):

  • schema://tables - Get list of all tables in the database
  • schema://table/{table_name} - Get detailed schema for a specific table
  • stats://table/{table_name} - Get statistics and metadata for a table (row count, column statistics)
  • sample://table/{table_name} - Get sample data (10 rows) from a table

License

MIT License - see LICENSE file for details.

About

Python library for accessing Defog.ai

Resources

License

Stars

Watchers

Forks

Packages

No packages published