Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Tool dataclass - unified abstraction to represent tools #8652

Merged
merged 20 commits into from
Dec 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/pydoc/config/data_classess_api.yml
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ loaders:
- type: haystack_pydoc_tools.loaders.CustomPythonLoader
search_path: [../../../haystack/dataclasses]
modules:
["answer", "byte_stream", "chat_message", "document", "streaming_chunk", "sparse_embedding"]
["answer", "byte_stream", "chat_message", "document", "streaming_chunk", "sparse_embedding", "tool"]
ignore_when_discovered: ["__init__"]
processors:
- type: filter
Expand Down
2 changes: 2 additions & 0 deletions haystack/dataclasses/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from haystack.dataclasses.document import Document
from haystack.dataclasses.sparse_embedding import SparseEmbedding
from haystack.dataclasses.streaming_chunk import StreamingChunk
from haystack.dataclasses.tool import Tool

__all__ = [
"Document",
Expand All @@ -22,4 +23,5 @@
"TextContent",
"StreamingChunk",
"SparseEmbedding",
"Tool",
]
243 changes: 243 additions & 0 deletions haystack/dataclasses/tool.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,243 @@
# SPDX-FileCopyrightText: 2022-present deepset GmbH <[email protected]>
#
# SPDX-License-Identifier: Apache-2.0

import inspect
from dataclasses import asdict, dataclass
from typing import Any, Callable, Dict, Optional

from pydantic import create_model

from haystack.lazy_imports import LazyImport
from haystack.utils import deserialize_callable, serialize_callable

with LazyImport(message="Run 'pip install jsonschema'") as jsonschema_import:
from jsonschema import Draft202012Validator
from jsonschema.exceptions import SchemaError


class ToolInvocationError(Exception):
"""
Exception raised when a Tool invocation fails.
"""

pass


class SchemaGenerationError(Exception):
"""
Exception raised when automatic schema generation fails.
"""

pass


@dataclass
class Tool:
"""
Data class representing a Tool that Language Models can prepare a call for.

Accurate definitions of the textual attributes such as `name` and `description`
are important for the Language Model to correctly prepare the call.

:param name:
Name of the Tool.
:param description:
Description of the Tool.
:param parameters:
A JSON schema defining the parameters expected by the Tool.
:param function:
The function that will be invoked when the Tool is called.
"""

name: str
description: str
parameters: Dict[str, Any]
function: Callable

def __post_init__(self):
jsonschema_import.check()
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Knowing that Tool is central piece of the Agents push, should be we make this dependency default? It's 80Kb binary

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm not totally sure. Let's involve also @julian-risch in the decision.

Copy link
Member

@vblagoje vblagoje Dec 18, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It seems to be not occurring on 3.9 and after, but ok, let's get this integrated and then we can experiment with including it as a default dependency. Or not.

# Check that the parameters define a valid JSON schema
try:
Draft202012Validator.check_schema(self.parameters)
except SchemaError as e:
raise ValueError("The provided parameters do not define a valid JSON schema") from e

@property
def tool_spec(self) -> Dict[str, Any]:
"""
Return the Tool specification to be used by the Language Model.
"""
return {"name": self.name, "description": self.description, "parameters": self.parameters}

def invoke(self, **kwargs) -> Any:
"""
Invoke the Tool with the provided keyword arguments.
"""

try:
result = self.function(**kwargs)
except Exception as e:
raise ToolInvocationError(f"Failed to invoke Tool `{self.name}` with parameters {kwargs}") from e
return result

def to_dict(self) -> Dict[str, Any]:
"""
Serializes the Tool to a dictionary.

:returns:
Dictionary with serialized data.
"""

serialized = asdict(self)
serialized["function"] = serialize_callable(self.function)
return serialized

@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "Tool":
"""
Deserializes the Tool from a dictionary.

:param data:
Dictionary to deserialize from.
:returns:
Deserialized Tool.
"""
data["function"] = deserialize_callable(data["function"])
return cls(**data)

@classmethod
def from_function(cls, function: Callable, name: Optional[str] = None, description: Optional[str] = None) -> "Tool":
"""
Create a Tool instance from a function.

### Usage example

```python
from typing import Annotated, Literal
from haystack.dataclasses import Tool

def get_weather(
city: Annotated[str, "the city for which to get the weather"] = "Munich",
unit: Annotated[Literal["Celsius", "Fahrenheit"], "the unit for the temperature"] = "Celsius"):
'''A simple function to get the current weather for a location.'''
return f"Weather report for {city}: 20 {unit}, sunny"

tool = Tool.from_function(get_weather)

print(tool)
>>> Tool(name='get_weather', description='A simple function to get the current weather for a location.',
>>> parameters={
>>> 'type': 'object',
>>> 'properties': {
>>> 'city': {'type': 'string', 'description': 'the city for which to get the weather', 'default': 'Munich'},
>>> 'unit': {
>>> 'type': 'string',
>>> 'enum': ['Celsius', 'Fahrenheit'],
>>> 'description': 'the unit for the temperature',
>>> 'default': 'Celsius',
>>> },
>>> }
>>> },
>>> function=<function get_weather at 0x7f7b3a8a9b80>)
```

:param function:
The function to be converted into a Tool.
The function must include type hints for all parameters.
If a parameter is annotated using `typing.Annotated`, its metadata will be used as parameter description.
:param name:
The name of the Tool. If not provided, the name of the function will be used.
:param description:
The description of the Tool. If not provided, the docstring of the function will be used.
To intentionally leave the description empty, pass an empty string.

:returns:
The Tool created from the function.

:raises ValueError:
If any parameter of the function lacks a type hint.
:raises SchemaGenerationError:
If there is an error generating the JSON schema for the Tool.
"""

tool_description = description if description is not None else (function.__doc__ or "")

signature = inspect.signature(function)

# collect fields (types and defaults) and descriptions from function parameters
fields: Dict[str, Any] = {}
descriptions = {}

for param_name, param in signature.parameters.items():
if param.annotation is param.empty:
raise ValueError(f"Function '{function.__name__}': parameter '{param_name}' does not have a type hint.")

# if the parameter has not a default value, Pydantic requires an Ellipsis (...)
# to explicitly indicate that the parameter is required
default = param.default if param.default is not param.empty else ...
fields[param_name] = (param.annotation, default)

if hasattr(param.annotation, "__metadata__"):
descriptions[param_name] = param.annotation.__metadata__[0]

# create Pydantic model and generate JSON schema
try:
model = create_model(function.__name__, **fields)
schema = model.model_json_schema()
except Exception as e:
raise SchemaGenerationError(f"Failed to create JSON schema for function '{function.__name__}'") from e

# we don't want to include title keywords in the schema, as they contain redundant information
# there is no programmatic way to prevent Pydantic from adding them, so we remove them later
# see https://github.com/pydantic/pydantic/discussions/8504
_remove_title_from_schema(schema)

# add parameters descriptions to the schema
for param_name, param_description in descriptions.items():
if param_name in schema["properties"]:
schema["properties"][param_name]["description"] = param_description

return Tool(name=name or function.__name__, description=tool_description, parameters=schema, function=function)


def _remove_title_from_schema(schema: Dict[str, Any]):
"""
Remove the 'title' keyword from JSON schema and contained property schemas.

:param schema:
The JSON schema to remove the 'title' keyword from.
"""
schema.pop("title", None)

for property_schema in schema["properties"].values():
for key in list(property_schema.keys()):
if key == "title":
del property_schema[key]


def deserialize_tools_inplace(data: Dict[str, Any], key: str = "tools"):
"""
Deserialize Tools in a dictionary inplace.

:param data:
The dictionary with the serialized data.
:param key:
The key in the dictionary where the Tools are stored.
"""
if key in data:
serialized_tools = data[key]

if serialized_tools is None:
return

if not isinstance(serialized_tools, list):
raise TypeError(f"The value of '{key}' is not a list")

deserialized_tools = []
for tool in serialized_tools:
if not isinstance(tool, dict):
raise TypeError(f"Serialized tool '{tool}' is not a dictionary")
deserialized_tools.append(Tool.from_dict(tool))

data[key] = deserialized_tools
3 changes: 2 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@ dependencies = [
"tenacity!=8.4.0",
"lazy-imports",
"openai>=1.56.1",
"pydantic",
"Jinja2",
"posthog", # telemetry
"pyyaml",
Expand Down Expand Up @@ -113,7 +114,7 @@ extra-dependencies = [
"jsonref", # OpenAPIServiceConnector, OpenAPIServiceToFunctions
"openapi3",

# Validation
# JsonSchemaValidator, Tool
"jsonschema",

# Tracing
Expand Down
8 changes: 8 additions & 0 deletions releasenotes/notes/tool-dataclass-12756077bbfea3a1.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
---
highlights: >
We are introducing the `Tool` dataclass: a simple and unified abstraction to represent tools throughout the framework.
By building on this abstraction, we will enable support for tools in Chat Generators,
providing a consistent experience across models.
features:
- |
Added a new `Tool` dataclass to represent a tool for which Language Models can prepare calls.
Loading
Loading