@@ -74,4 +74,35 @@ plt(solver.loss_history)
74
74
plt.multi_plot((solver.train_acc_history, solver.val_acc_history), ('train', 'val'),
75
75
title='准确率', xlabel='迭代/次', ylabel='准确率')
76
76
print('best_train_acc: %f; best_val_acc: %f' % (solver.best_train_acc, solver.best_val_acc))
77
- ```
77
+ ```
78
+
79
+ 训练日志如下
80
+
81
+ ```
82
+ $ python 2_nn_mnist.py
83
+ epoch: 1 time: 1.08 loss: 0.684346
84
+ train acc: 0.8880; val_acc: 0.8914
85
+ epoch: 2 time: 1.00 loss: 0.337981
86
+ train acc: 0.9131; val_acc: 0.9162
87
+ epoch: 3 time: 1.05 loss: 0.284188
88
+ train acc: 0.9320; val_acc: 0.9320
89
+ epoch: 4 time: 1.01 loss: 0.249591
90
+ train acc: 0.9448; val_acc: 0.9439
91
+ epoch: 5 time: 0.99 loss: 0.227722
92
+ train acc: 0.9528; val_acc: 0.9493
93
+ epoch: 6 time: 0.99 loss: 0.213616
94
+ train acc: 0.9592; val_acc: 0.9547
95
+ epoch: 7 time: 1.00 loss: 0.204579
96
+ train acc: 0.9640; val_acc: 0.9594
97
+ epoch: 8 time: 1.04 loss: 0.198835
98
+ train acc: 0.9685; val_acc: 0.9642
99
+ epoch: 9 time: 1.03 loss: 0.195210
100
+ train acc: 0.9715; val_acc: 0.9669
101
+ epoch: 10 time: 1.01 loss: 0.193020
102
+ train acc: 0.9738; val_acc: 0.9684
103
+ best_train_acc: 0.973767; best_val_acc: 0.968400
104
+ ```
105
+
106
+ ![ ] ( ./imgs/loss.png )
107
+
108
+ ![ ] ( ./imgs/acc.png )
0 commit comments