Skip to content
This repository has been archived by the owner on Mar 6, 2021. It is now read-only.

Module name and method changes has been done . #17

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 2 additions & 11 deletions plot_elm_comparison.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,52 +7,42 @@
======================
A comparison of a several ELMClassifiers with different types of hidden
layer activations.

ELMClassifier is a classifier based on the Extreme Learning Machine,
a single layer feedforward network with random hidden layer components
and least squares fitting of the hidden->output weights by default [1][2]

The point of this example is to illustrate the nature of decision boundaries
with different hidden layer activation types and regressors.

This should be taken with a grain of salt, as the intuition conveyed by
these examples does not necessarily carry over to real datasets.

In particular in high dimensional spaces data can more easily be separated
linearly and the simplicity of classifiers such as naive Bayes and linear SVMs
might lead to better generalization.

The plots show training points in solid colors and testing points
semi-transparent. The lower right shows the classification accuracy on the test
set.

References
__________
.. [1] http://www.extreme-learning-machines.org
.. [2] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, "Extreme Learning Machine:
Theory and Applications", Neurocomputing, vol. 70, pp. 489-501,
2006.

===============================================================================
Basis Functions:
gaussian rbf : exp(-gamma * (||x-c||/r)^2)
tanh : np.tanh(a)
sinsq : np.power(np.sin(a), 2.0)
tribas : np.clip(1.0 - np.fabs(a), 0.0, 1.0)
hardlim : np.array(a > 0.0, dtype=float)

where x : input pattern
a : dot_product(x, c) + b
c,r : randomly generated components

Label Legend:
ELM(10,tanh) :10 tanh units
ELM(10,tanh,LR) :10 tanh units, LogisticRegression
ELM(10,sinsq) :10 sin*sin units
ELM(10,tribas) :10 tribas units
ELM(10,hardlim) :10 hardlim units
ELM(20,rbf(0.1)) :20 rbf units gamma=0.1

"""
print __doc__

Expand All @@ -69,7 +59,7 @@
from matplotlib.colors import ListedColormap
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

from elm import GenELMClassifier
Expand Down Expand Up @@ -211,3 +201,4 @@ def make_linearly_separable():

figure.subplots_adjust(left=.02, right=.98)
pl.show()

63 changes: 3 additions & 60 deletions random_layer.py
Original file line number Diff line number Diff line change
@@ -1,20 +1,3 @@
#-*- coding: utf8
# Author: David C. Lambert [dcl -at- panix -dot- com]
# Copyright(c) 2013
# License: Simple BSD

"""The :mod:`random_layer` module
implements Random Layer transformers.

Random layers are arrays of hidden unit activations that are
random functions of input activation values (dot products for simple
activation functions, distances from prototypes for radial basis
functions).

They are used in the implementation of Extreme Learning Machines (ELMs),
but can be used as a general input mapping.
"""

from abc import ABCMeta, abstractmethod

from math import sqrt
Expand All @@ -24,7 +7,7 @@
from scipy.spatial.distance import cdist, pdist, squareform

from sklearn.metrics import pairwise_distances
from sklearn.utils import check_random_state, atleast2d_or_csr
from sklearn.utils import check_random_state,check_array
from sklearn.utils.extmath import safe_sparse_dot
from sklearn.base import BaseEstimator, TransformerMixin

Expand Down Expand Up @@ -95,20 +78,17 @@ def _compute_hidden_activations(self, X):
# on the input array
def fit(self, X, y=None):
"""Generate a random hidden layer.

Parameters
----------
X : {array-like, sparse matrix} of shape [n_samples, n_features]
Training set: only the shape is used to generate random component
values for hidden units

y : is not used: placeholder to allow for usage in a Pipeline.

Returns
-------
self
"""
X = atleast2d_or_csr(X)
X = check_array(X)

self._generate_components(X)

Expand All @@ -118,19 +98,16 @@ def fit(self, X, y=None):
# (which will normally call compute_input_activations first)
def transform(self, X, y=None):
"""Generate the random hidden layer's activations given X as input.

Parameters
----------
X : {array-like, sparse matrix}, shape [n_samples, n_features]
Data to transform

y : is not used: placeholder to allow for usage in a Pipeline.

Returns
-------
X_new : numpy array of shape [n_samples, n_components]
"""
X = atleast2d_or_csr(X)
X = check_array(X)

if (self.components_ is None):
raise ValueError('No components initialized')
Expand All @@ -142,77 +119,58 @@ class RandomLayer(BaseRandomLayer):
"""RandomLayer is a transformer that creates a feature mapping of the
inputs that corresponds to a layer of hidden units with randomly
generated components.

The transformed values are a specified function of input activations
that are a weighted combination of dot product (multilayer perceptron)
and distance (rbf) activations:

input_activation = alpha * mlp_activation + (1-alpha) * rbf_activation

mlp_activation(x) = dot(x, weights) + bias
rbf_activation(x) = rbf_width * ||x - center||/radius

alpha and rbf_width are specified by the user

weights and biases are taken from normal distribution of
mean 0 and sd of 1

centers are taken uniformly from the bounding hyperrectangle
of the inputs, and radii are max(||x-c||)/sqrt(n_centers*2)

The input activation is transformed by a transfer function that defaults
to numpy.tanh if not specified, but can be any callable that returns an
array of the same shape as its argument (the input activation array, of
shape [n_samples, n_hidden]). Functions provided are 'sine', 'tanh',
'tribas', 'inv_tribas', 'sigmoid', 'hardlim', 'softlim', 'gaussian',
'multiquadric', or 'inv_multiquadric'.

Parameters
----------
`n_hidden` : int, optional (default=20)
Number of units to generate

`alpha` : float, optional (default=0.5)
Mixing coefficient for distance and dot product input activations:
activation = alpha*mlp_activation + (1-alpha)*rbf_width*rbf_activation

`rbf_width` : float, optional (default=1.0)
multiplier on rbf_activation

`user_components`: dictionary, optional (default=None)
dictionary containing values for components that woud otherwise be
randomly generated. Valid key/value pairs are as follows:
'radii' : array-like of shape [n_hidden]
'centers': array-like of shape [n_hidden, n_features]
'biases' : array-like of shape [n_hidden]
'weights': array-like of shape [n_features, n_hidden]

`activation_func` : {callable, string} optional (default='tanh')
Function used to transform input activation

It must be one of 'tanh', 'sine', 'tribas', 'inv_tribas',
'sigmoid', 'hardlim', 'softlim', 'gaussian', 'multiquadric',
'inv_multiquadric' or a callable. If None is given, 'tanh'
will be used.

If a callable is given, it will be used to compute the activations.

`activation_args` : dictionary, optional (default=None)
Supplies keyword arguments for a callable activation_func

`random_state` : int, RandomState instance or None (default=None)
Control the pseudo random number generator used to generate the
hidden unit weights at fit time.

Attributes
----------
`input_activations_` : numpy array of shape [n_samples, n_hidden]
Array containing dot(x, hidden_weights) + bias for all samples

`components_` : dictionary containing two keys:
`bias_weights_` : numpy array of shape [n_hidden]
`hidden_weights_` : numpy array of shape [n_features, n_hidden]

See Also
--------
"""
Expand Down Expand Up @@ -424,60 +382,45 @@ def __init__(self, n_hidden=20, random_state=None,

class GRBFRandomLayer(RBFRandomLayer):
"""Random Generalized RBF Hidden Layer transformer

Creates a layer of radial basis function units where:

f(a), s.t. a = ||x-c||/r

with c the unit center
and f() is exp(-gamma * a^tau) where tau and r are computed
based on [1]

Parameters
----------
`n_hidden` : int, optional (default=20)
Number of units to generate, ignored if centers are provided

`grbf_lambda` : float, optional (default=0.05)
GRBF shape parameter

`gamma` : {int, float} optional (default=1.0)
Width multiplier for GRBF distance argument

`centers` : array of shape (n_hidden, n_features), optional (default=None)
If provided, overrides internal computation of the centers

`radii` : array of shape (n_hidden), optional (default=None)
If provided, overrides internal computation of the radii

`use_exemplars` : bool, optional (default=False)
If True, uses random examples from the input to determine the RBF
centers, ignored if centers are provided

`random_state` : int or RandomState instance, optional (default=None)
Control the pseudo random number generator used to generate the
centers at fit time, ignored if centers are provided

Attributes
----------
`components_` : dictionary containing two keys:
`radii_` : numpy array of shape [n_hidden]
`centers_` : numpy array of shape [n_hidden, n_features]

`input_activations_` : numpy array of shape [n_samples, n_hidden]
Array containing ||x-c||/r for all samples

See Also
--------
ELMRegressor, ELMClassifier, SimpleELMRegressor, SimpleELMClassifier,
SimpleRandomLayer

References
----------
.. [1] Fernandez-Navarro, et al, "MELM-GRBF: a modified version of the
extreme learning machine for generalized radial basis function
neural networks", Neurocomputing 74 (2011), 2502-2510

"""
# def _grbf(acts, taus):
# """GRBF activation function"""
Expand Down