Skip to content

datirium/eclip

 
 

Repository files navigation

eCLIP

eCLIP is a pipeline designed to identify genomic locations of RNA-bound proteins.

Description/methods:

  • (paired-end only) Demultiplexes paired-end reads using inline barcodes
  • Trims adapters & adapter-dimers with cutadapt
  • Maps to repeat elements with STAR and filter
  • Maps filtered reads to genome with STAR
  • Removes PCR-duplicates with umi_tools (single-end) or with a custom python script (barcodecollapsepe.py)
  • (paired-end only) Merges multiple inline barcodes and filters R1 (uses only R2 for peak calling)
  • Calls enriched peak regions (peak clusters) with CLIPPER
  • Uses size-matched input sample to normalize and calculate fold-change enrichment within enriched peak regions with custom perl scripts (overlap_peakfi_with_bam_PE.pl, compress_l2foldenrpeakfi_for_replicate_overlapping_bedformat.pl)

For a full description (including commandline args), you may refer to the Standard Operating Procedure

Explore the pipeline definition here:

Installation:

Hardware recommendations:

For human datasets, we recommend at least 8 cores (for Clipper) and 32G memory (for STAR). Conservatively, you should expect to have at least 200G in free disk space (this requirement including all inputs, indices, intermediates, and outputs).

The pipeline has been tested using the following softwares and their versions:

  • bedtools=2.27.1
  • clipper=5d865bb17b2bc6787b4c382bc857119ae917ad59
  • cutadapt=1.14
  • eclipdemux=0.0.1
  • fastqc=0.11.8
  • fastq-tools=0.8
  • perl=5.10.1
    • Statistics::Basic 1.6611
    • Statistics::Distributions 1.02
    • Statistics::R 0.34
  • R=3.3.2
  • python=2.7.16
    • pysam=0.15.4
    • numpy=1.16.5
    • seaborn
  • samtools=1.6
  • star=2.7.6a
  • ucsc-tools=377
  • umi_tools=1.0.0

Alternatively, you may refer to the dockerRequirements within each CWL document to pull the proper environments for each step.

Additional pipeline-specific requirements (minimal, one node w/ one or more cores):

Additional pipeline-specific requirements (for running in parallel on Torque/PBS-based clusters):

Prerequisite files:

(make sure to place this in a location with plenty of space!):

  • Sequencing data (in fastq format). You may download our reference RBFOX2 HepG2 raw data here: RBFOX2
  • Genome STAR index directory (fasta files can be downloaded from UCSC; hg19)
  • Repeat element STAR index directory (We now recommend using the most up-to-date RepBase files corresponding to your species of interest, otherwise you may email us for an example human-based reference).
  • FASTA file containing barcodes for demultiplexing reads
  • chrom.sizes file (tabbed file containing chromosome name and length, can be downloaded from UCSC; hg19)
  • Manifest YAML or JSON file describing paths of the above data
  • Blacklist file containing potential artifact regions. These have been manually curated using ENCODE3 datasets and can be found here:

Description of the manifest

STAR indices:

speciesGenomeDir:
  class: Directory
  path: /path/to/stargenome

repeatElementGenomeDir:
  class: Directory
  path: /path/to/repeatelement

CLIPPER params:

species: hg19  # for supported species, see clipper docs

UMI & barcode params:

randomer_length: "5"  # (Paired-end only) length of the UMI assigned to each read. This may differ depending on the size of your randomer sequence.

barcodesfasta:  # (Paired-end only) This is a FASTA formatted file containing the barcodes we will use to demultiplex our FASTQ's:
  class: File
  path: /path/to/barcodes

Blacklist file:

blacklist_file: # (Single-end only) This is a BED6 file containing regions that will be excluded from the final peak outputs. Typically comprised of artifact regions such as tRNA/snoRNA/etc.)
  class: File
  path: /path/to/blacklist

The following YAML block describes the location paths of the forward (read1), reverse (read2) reads, and the barcodes required to demultiplex these reads for each sample.

Barcode names must match those described in the above barcodes.fasta file!

(For example, if you are using our standard paired-end barcodes here, make sure the barcodeids are one of: A01, A03, A04, B06, C01, D8f, F05, G07, X1A, X1B, X2A, X2B, or NIL for "inputs". Single-end protocols may not have inline barcodes. If this is the case, you will use the a_adapters.fasta. Else, SE protocols with inline barcodes will need the fasta file corresponding to the barcode in question:

We're showing two samples (2 replicates each) for a paired-end experiment described in this space. Each sample will be defined as indicated below each name: field. Make sure these names are unique per sample! They (and dataset name above) are used to determine the filename prefixes and non-unique IDs will override each other.

PE Data:

samples:
  -
    - ip_read:
      name: rep1_clip
      barcodeids: [A01, B06]
      read1:
        class: File
        path: /path/to/clip.fastq.gz
      read2:
        class: File
        path: /path/to/clip.fastq.gz
        
    - input_read:
      name: rep1_input
      barcodeids: [NIL, NIL]
      read1:
        class: File
        path: /path/to/clip.fastq.gz
      read2:
        class: File
        path: /path/to/clip.fastq.gz
  -
    - ip_read:
      name: rep2_clip
      barcodeids: [C01, D8f]
      read1:
        class: File
        path: /path/to/clip.fastq.gz
      read2:
        class: File
        path: /path/to/clip.fastq.gz

    - input_read:
      name: rep2_input
      barcodeids: [NIL, NIL]
      read1:
        class: File
        path: /path/to/clip.fastq.gz
      read2:
        class: File
        path: /path/to/clip.fastq.gz

SE Data:

samples:
  - 
    - ip_read:
      name: rep1_clip
      read1:
        class: File
        path: /path/to/clip.fastq.gz
      adapters:
        class: File
        path: inputs/InvRNA1_adapters.fasta

    - input_read:
      name: 4020_INPUT1
      read1:
        class: File
        path: /path/to/clip.fastq.gz
      adapters:
        class: File
        path: inputs/InvRNA5_adapters.fasta
  - 
    - ip_read:
      name: 4020_CLIP1
      read1:
        class: File
        path: /path/to/clip.fastq.gz
      adapters:
        class: File
        path: inputs/InvRNA1_adapters.fasta

    - input_read:
      name: 4020_INPUT1
      read1:
        class: File
        path: /path/to/clip.fastq.gz
      adapters:
        class: File
        path: inputs/InvRNA5_adapters.fasta

Running the data with required arguments:

Assuming you have:

  • Downloaded and generated the relevant STAR indices
  • Installed CWL
  • Installed Docker (or alternatively, verified relevant binaries are located in your $PATH)
  • Ensured the relevant files are locatable in your $PATH (eclip/bin:eclip/cwl:eclip/wf)

You can run the pipeline using one of our wrappers in (wf/):

./paired_end_clip.yaml
./single_end_clip.yaml

Or, run the workflow using cwl in its native context:

cwltool wf_get_peaks_pe_scatter.cwl paired_end_clip.yaml
cwltool wf_get_peaks_se_scatter.cwl single_end_clip.yaml

Running on a complete dataset takes about a day for human ENCODE data (24 hours), so sit back and relax by reading the rest of this README.

Outputs:

Input-normalized peaks will contain candidate binding regions.

For Single-end eCLIP, you can expect outputs to follow this filestructure:

Dataset: "myRBP" name: "IP" eCLIP-0.2.2 eCLIP-0.3.0+
Cutadapt x1 metrics myRBP.IP.umi.r1Tr.metrics myRBP.IP.umi.r1.fqTr.metrics
Cutadapt x2 metrics myRBP.IP.umi.r1TrTr.metrics myRBP.IP.umi.r1.fqTrTr.metrics
Demuxed + adapter trimmed reads myRBP.IP.umi.r1TrTr.fq myRBP.IP.umi.r1TrTr.fq
Repetitive element filtered reads myRBP.IP.umi.r1TrTr.sorted.STARUnmapped.out.sorted.fq myRBP.IP.umi.r1.fq.repeat-unmapped.sorted.fq.gz
STAR metrics (repeat aligned) myRBP.IP.umi.r1TrTr.sorted.STARLog.final.out myRBP.IP.umi.r1.fqTrTr.sorted.STARLog.final.out
Unique genome aligned reads (sorted) myRBP.IP.umi.r1TrTr.sorted.STARUnmapped.out.sorted.STARAligned.outSo.bam myRBP.IP.umi.r1.fq.genome-mappedSoSo.bam
STAR metrics (genome aligned) myRBP.IP.umi.r1TrTr.sorted.STARUnmapped.out.sorted.STARLog.final.out myRBP.IP.umi.r1.fq.repeat-unmapped.sorted.STARLog.final.out
PCR duplicate removed aligned reads myRBP.IP.umi.r1TrTr.sorted.STARUnmapped.out.sorted.STARAligned.outSo.rmDupSo.bam myRBP.IP.umi.r1.fq.genome-mappedSoSo.rmDupSo.bam
CLIPper peaks myRBP.IP.umi.r1TrTr.sorted.STARUnmapped.out.sorted.STARAligned.outSo.rmDupSo.peakClusters.bed myRBP.IP.umi.r1.fq.genome-mappedSoSo.rmDupSo.peakClusters.bed
Input-normalized peaks myRBP.IP.umi.r1TrTr.sorted.STARUnmapped.out.sorted.STARAligned.outSo.rmDupSo.peakClusters.normed.compressed.bed myRBP.IP.umi.r1.fq.genome-mappedSoSo.rmDupSo.peakClusters.normed.compressed.bed
RPM-normalized BigWig files myRBP.IP.umi.r1TrTr.sorted.STARUnmapped.out.sorted.STARAligned.outSo.rmDupSo.norm.*.bw myRBP.IP.umi.r1.fq.genome-mappedSoSo.rmDupSo.norm.*.bw
Blacklist-filtered peaks myRBP.IP.umi.r1.fq.genome-mappedSoSo.rmDupSo.peakClusters.normed.compressed.sorted.blacklist-removed.bed
Blacklist-filtered bigBeds myRBP.IP.umi.r1.fq.genome-mappedSoSo.rmDupSo.peakClusters.normed.compressed.sorted.blacklist-removed.fx.bb
Blacklist-filtered narrowPeaks myRBP.IP.umi.r1.fq.genome-mappedSoSo.rmDupSo.peakClusters.normed.compressed.sorted.blacklist-removed.narrowPeak
made with: https://www.tablesgenerator.com/markdown_tables

For Paired-end eCLIP:

eCLIP 0.2.x eCLIP GATK eCLIP 0.3+
Demuxed + adapter trimmed reads *.CLIP.barcode.r1TrTr.fq RBFOX2-204-CLIP_S1_R*.A01_204_01_RBFOX2.adapterTrim.round2.fastq.gz 204.01_RBFOX2.A01.r*.fqTrTr.fqgz
Repetitive element filtered reads *.CLIP.barcode.r1.fqTrTr.sorted.STARUnmapped.out.sorted.fq RBFOX2-204-CLIP_S1_R1.A01_204_01_RBFOX2.adapterTrim.round2.rep.bamUnmapped.out.mate* 204.01_RBFOX2.A01.r*.fqTrTr.repeat-unmapped.sorted.fq.gz
Unique genome aligned reads *.CLIP.barcode.r1TrTr.sorted.STARUnmapped.out.sorted.STARAligned.outSo.bam RBFOX2-204-CLIP_S1_R1.A01_204_01_RBFOX2.adapterTrim.round2.rmRep.bam 204.01_RBFOX2.A01.r1.fq.genome-mappedSo.bam
PCR duplicate removed aligned reads *.CLIP.barcode.r1TrTr.sorted.STARUnmapped.out.sorted.STARAligned.outSo.rmDupSo.bam RBFOX2-204-CLIP_S1_R1.A01_204_01_RBFOX2.adapterTrim.round2.rmRep.rmDup.sorted.bam 204.01_RBFOX2.A01.r1.fq.genome-mappedSo.rmDupSo.bam
Barcode merged alignments *.CLIP.barcode.r1.fqTrTr.sorted.STARUnmapped.out.sorted.STARAligned.outSo.rmDupSo.merged.r2.bam 204_01_RBFOX2.merged.r2.bam 204.01_RBFOX2.A01.r1.fq.genome-mappedSo.rmDupSo.merged.r2.bam
CLIPper peaks *.CLIP.barcode.r1TrTr.sorted.STARUnmapped.out.sorted.STARAligned.outSo.rmDupSo.peakClusters.bed 204_01_RBFOX2.merged.r2.peaks.bed 204.01_RBFOX2.A01.r1.fq.genome-mappedSo.rmDupSo.merged.r2.peakClusters.bed
Input-normalized peaks *.CLIP.barcode.r1TrTr.sorted.STARUnmapped.out.sorted.STARAligned.outSo.rmDupSo.peakClusters.normed.compressed.bed 204_01.basedon_204_01.peaks.l2inputnormnew.bed.compressed.bed 204.01_RBFOX2.A01.r1.fq.genome-mappedSo.rmDupSo.merged.r2.peakClusters.normed.compressed.bed

Notes regarding outputs (FAQ):

  • When going through the merged BAM file results, I can only find files with only one of the paired barcodes (e.g. A01 of A01/B06). Is this normal? Yes, *.merged*.bam indicates that both barcodes have been merged, I just use the first as a prefix namespace for the next step.
  • Regarding the narrowPeak files - The scores in the 5th column are almost always equal to 1000 or 200, where do these values come from and what do they represent? 200/1000 flags each peak as significant (1000) or not (200) visually on the genome browser
  • Regarding

References:

Van Nostrand, Eric L., et al. "Robust, Cost-Effective Profiling of RNA Binding Protein Targets with Single-end Enhanced Crosslinking and Immunoprecipitation (seCLIP)." mRNA Processing. Methods Mol Biol. 2017;1648:177-200.

Van Nostrand, E.L., Pratt, G.A., Shishkin, A.A., Gelboin-Burkhart, C., Fang, M.Y., Sundararaman, B., Blue, S.M., Nguyen, T.B., Surka, C., Elkins, K. and Stanton, R. "Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP)." Nature methods 13.6 (2016): 508-514.

Amstutz, Peter; Crusoe, Michael R.; Tijanić, Nebojša; Chapman, Brad; Chilton, John; Heuer, Michael; Kartashov, Andrey; Leehr, Dan; Ménager, Hervé; Nedeljkovich, Maya; Scales, Matt; Soiland-Reyes, Stian; Stojanovic, Luka (2016): Common Workflow Language, v1.0. figshare. https://doi.org/10.6084/m9.figshare.3115156.v2 Retrieved: 22 13, May 11, 2017 (GMT)

Kurtzer GM, Sochat V, Bauer MW (2017): Singularity: Scientific containers for mobility of compute. PLoS ONE 12(5): e0177459. https://doi.org/10.1371/journal.pone.0177459

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Common Workflow Language 68.8%
  • Perl 15.4%
  • Shell 13.9%
  • Python 1.4%
  • Jupyter Notebook 0.5%