Skip to content

datastax/astra-db-ts

Repository files navigation

@datastax/astra-db-ts

astra-db-ts is a TypeScript client for interacting with DataStax Astra DB.

This README targets v2.0.0+, which expands on the previous 1.x API. Click here for the pre-existing client readme.

Table of contents

Quickstart

Use your preferred package manager to install @datastax/astra-db-ts.

npm i @datastax/astra-db-ts # or your favorite package manager's equivalent

If you're using TypeScript, you must use at least version 5.0.0 to use astra-db-ts 2.0, as it uses modern TypeScript features such as const type parameters.

npm i typescript@^5.0.0

Get the API endpoint and your application token for your Astra DB instance @ astra.datastax.com.

Collections

import { DataAPIClient, ObjectId, vector, VectorDoc, oid } from '@datastax/astra-db-ts';

// Connect to the db
const client = new DataAPIClient({ logging: 'all' });
const db = client.db(process.env.CLIENT_DB_URL!, { token: process.env.CLIENT_DB_TOKEN! });

// The `VectorDoc` interface adds `$vector?: DataAPIVector` as a field to the collection type
interface Dream extends VectorDoc {
  _id: ObjectId,
  summary: string,
  tags?: string[],
}

(async () => {
  // Create the collection with a custom default ID type
  const collection = await db.createCollection<Dream>('dreams', {
    defaultId: { type: 'objectId' },
  });

  // Batch-insert some rows into the table. 
  // _id can be optionally provided, or be auto-generated @ the server side
  await collection.insertMany([{
    summary: 'A dinner on the Moon',
    $vector: vector([0.2, -0.3, -0.5]),
  }, {
    summary: 'Riding the waves',
    $vector: vector([0, 0.2, 1]),
    tags: ['sport'],
  }, {
    _id: oid('674f0f5c1c162131319fa09e'),
    summary: 'Meeting Beethoven at the dentist',
    $vector: vector([0.2, 0.6, 0]),
  }]);

  // Hm, changed my mind
  await collection.updateOne({ _id: oid('674f0f5c1c162131319fa09e') }, {
    $set: { summary: 'Surfers\' paradise' } 
  });

  // Let's see what we've got, by performing a vector search
  const cursor = collection.find({})
    .sort({ vector: vector([0, 0.2, 0.4]) })
    .includeSimilarity(true)
    .limit(2);

  // This would print:
  // - Surfers' paradise: 0.98238194
  // - Friendly aliens in town: 0.91873914
  for await (const result of cursor) {
    console.log(`${result.summary}: ${result.$similarity}`);
  }

  // Cleanup (if desired)
  await collection.drop();
})();

Tables

import { DataAPIClient, InferTableSchema, Table, vector } from '@datastax/astra-db-ts';

// Connect to the db
const client = new DataAPIClient({ logging: 'all' });
const db = client.db(process.env.CLIENT_DB_URL!, { token: process.env.CLIENT_DB_TOKEN! });

// Define the table's schema so we can infer the type of the table automatically (TS v5.0+)
const DreamsTableSchema = Table.schema({
  columns: {
    id: 'int',
    summary: 'text',
    tags: { type: 'set', valueType: 'text' },
    vector: { type: 'vector', dimension: 3 },
  },
  primaryKey: 'id',
});

// Infer the TS-equivalent type from the table definition (like zod or arktype). Equivalent to:
//
// interface TableSchema {
//   id: number,
//   summary?: string | null,
//   tags?: Set<string>,
//   vector?: DataAPIVector | null,
// }
type Dream = InferTableSchema<typeof DreamsTableSchema>;

(async () => {
  // Create the table if it doesn't already exist
  // Table will be typed as `Table<Dream, { id: number }>`, where the former is the schema, and the latter is the primary key
  const table = await db.createTable('dreams', {
    definition: DreamsTableSchema,
    ifNotExists: true,
  });

  // Create a vector index on the vector column so we can perform ANN searches on the table
  await table.createVectorIndex('dreams_vector_idx', 'vector', {
    options: { metric: 'cosine' },
    ifNotExists: true,
  });

  // Batch-insert some rows into the table
  const rows: Dream[] = [{
    id: 102,
    summary: 'A dinner on the Moon',
    vector: vector([0.2, -0.3, -0.5]),
  }, {
    id: 103,
    summary: 'Riding the waves',
    vector: vector([0, 0.2, 1]),
    tags: new Set(['sport']),
  }, {
    id: 37,
    summary: 'Meeting Beethoven at the dentist',
    vector: vector([0.2, 0.6, 0]),
  }];
  await table.insertMany(rows);

  // Hm, changed my mind
  await table.updateOne({ id: 103 }, {
    $set: { summary: 'Surfers\' paradise' } 
  });

  // Let's see what we've got, by performing a vector search
  const cursor = table.find({})
    .sort({ vector: vector([0, 0.2, 0.4]) })
    .includeSimilarity(true)
    .limit(2);

  // This would print:
  // - Surfers' paradise: 0.98238194
  // - Friendly aliens in town: 0.91873914
  for await (const result of cursor) {
    console.log(`${result.summary}: ${result.$similarity}`);
  }

  // Cleanup (if desired)
  await table.drop();
})();

Next steps

High-level architecture

astra-db-ts's abstractions for working at the data and admin layers are structured as depicted by this diagram:

flowchart TD
  DataAPIClient -->|".db(endpoint)"| Db
  DataAPIClient -->|".admin()"| AstraAdmin

  Db --->|".collection(name)
  .createCollection(name)"| Collection

  Db --->|".table(name)
  .createTable(name)"| Table

  AstraAdmin -->|".dbAdmin(endpoint)
  .dbAdmin(id, region)"| DbAdmin

  Db -->|".admin()"| DbAdmin
  DbAdmin -->|".db()"| Db
Loading

Here's a small admin-oriented example:

import { DataAPIClient } from '@datastax/astra-db-ts';

// Spawn an admin 
const client = new DataAPIClient('*TOKEN*');
const admin = client.admin();

(async () => {
  // list info about all databases
  const databases = await admin.listDatabases();
  const dbInfo = databases[0];
  console.log(dbInfo.name, dbInfo.id, dbInfo.regions);

  // list keyspaces for the first database
  const dbAdmin = admin.dbAdmin(dbInfo.id, dbInfo.regions[0].name);
  console.log(await dbAdmin.listKeyspaces());
})();

Options hierarchy

Like the client hierarchy, the options for each class also exist in a hierarchy.

The general options for parent classes are deeply merged with the options for child classes.

graph TD
  DataAPIClientOptions --> AdminOptions
  DataAPIClientOptions --> DbOptions
  DbOptions --> CollectionOptions
  DbOptions --> TableOptions
Loading

Datatypes

See DATATYPES.md for a full list of supported datatypes and their TypeScript equivalents.

Non-astra support

astra-db-ts officially supports Data API instances using non-Astra backends, such as Data API on DSE or HCD.

However, while support is native, detection is not; you will have to manually declare the environment at times.

import { DataAPIClient, UsernamePasswordTokenProvider, DataAPIDbAdmin } from '@datastax/astra-db-ts';

// You'll need to pass in environment to the DataAPIClient when not using Astra
const tp = new UsernamePasswordTokenProvider('*USERNAME*', '*PASSWORD*');
const client = new DataAPIClient(tp, { environment: 'dse' });
const db = client.db('*ENDPOINT*');

// A common idiom may be to use `dbAdmin.createKeyspace` with `updateDbKeyspace` to initialize the keyspace when necessary
const dbAdmin = db.admin({ environment: 'dse' });
dbAdmin.createKeyspace('...', { updateDbKeyspace: true });

The TokenProvider class is an extensible concept to allow you to create or even refresh your tokens as necessary, depending on the Data API backend. Tokens may even be omitted if necessary.

astra-db-ts provides two TokenProvider instances by default:

  • StaticTokenProvider - This unit provider simply regurgitates whatever token was passed into its constructor
  • UsernamePasswordTokenProvider - Turns a user/pass pair into an appropriate token for DSE/HCD

(See examples/non-astra-backends for a full example of this in action.)

Browser support

astra-db-ts is designed to work in server-side environments, but it can technically work in the browser as well.

However, if, for some reason, you really want to use this in a browser, you may need to install the events polyfill, and possibly set up a CORS proxy (such as CORS Anywhere) to forward requests to the Data API.

But keep in mind that this may be very insecure, especially if you're hardcoding sensitive data into your client-side code, as it's trivial for anyone to inspect the code and extract the token (through XSS attacks or otherwise).

See examples/browser for a full example of browser usage in action, and steps on how to use astra-db-ts in your own browser application.

Using HTTP/2

astra-db-ts uses the native fetch API by default, but it can also work with HTTP/2 using the fetch-h2 module.

However, due to compatability reasons, fetch-h2 is no longer dynamically imported by default, and must be provided to the client manually.

Luckily, it is only a couple of easy steps to get HTTP/2 working in your project:

  1. Install fetch-h2 by running npm i fetch-h2.
  2. Provide fetch-h2 to the client.
import * as fetchH2 from 'fetch-h2';
// or `const fetchH2 = require('fetch-h2');`

const client = new DataAPIClient({
  httpOptions: {
    client: 'fetch-h2',
    fetchH2: fetchH2,
  },
});

See the using HTTP/2 example for a full example of this in action, and more information on how to use astra-db-ts with HTTP/2.

Examples

Check out the examples directory for more examples on how to use astra-db-ts in your own projects.