Automated exploration of files with structured data on them (csv
, txt
,
Excel
) in a folder structure to extract metadata and potential usage of
information.
If you have a bunch of sctructured data in plain files, this library is for you.
pip install -q git+https://github.com/darenasc/auto-fes.git
pip install -q ydata_profiling sweetviz # to make profiling tools work
afes --help
afes explore --help
afes explore <PATH_TO_FILES_TO_EXPLORE>
afes generate --help
afes generate <PATH_TO_FILES_TO_EXPLORE> # or
afes generate <PATH_TO_FILES_TO_EXPLORE> <OUTPUT_FILE_WITH_CODE>
afes profile --help
afes profile <PATH_TO_FILES_TO_EXPLORE> # or
afes profile <PATH_TO_FILES_TO_EXPLORE> <OUTPUTS_PATH_FOR_REPORTS> # or
afes profile <PATH_TO_FILES_TO_EXPLORE> <OUTPUTS_PATH_FOR_REPORTS> <PROFILE_TOOL> # 'ydata-profiling' or 'sweetviz'
from afes import afe
# Path to folder with files to be explored
TARGET_FOLDER = "<PATH_TO_FILES_TO_EXPLORE>"
OUTPUT_FOLDER = "<PATH_TO_OUTPUTS>"
# Run exploration on the files
df_files = afe.explore_files(TARGET_FOLDER)
# Generate pandas code to load the files
afe.generate_code(df_files)
# Run profiling on each file
afe.profile_files(df_files, profile_tool="ydata-profiling", output_path=OUTPUT_FOLDER)
afe.profile_files(df_files, profile_tool="sweetviz", output_path=OUTPUT_FOLDER)
- Explore
- Generate code
- Profile
flowchart LR
Explore --> Generate
Explore --> Profile
Generate --> PandasCode
Profile --> ydata-profile@{ shape: doc }
Profile --> sweetviz@{ shape: doc }
from afes import afe
# Path to folder with files to be explored
TARGET_FOLDER = "<PATH_TO_FILES_TO_EXPLORE>"
# Run exploration on the files
df_files = afe.explore_files(TARGET_FOLDER)
df_files
The df_files
dataframe will look like the following table, depending on the
files you plan to explore.
| | path | name | extension | size | human_readable | rows | separator |
| ---: | :------------------------------------------------ | :----------------------- | :-------- | ------: | :------------- | ----: | :-------- |
| 1 | /content/sample_data/auto_mpg.csv | auto_mpg | .csv | 20854 | 20.4 KiB | 399 | comma |
| 2 | /content/sample_data/car_evaluation.csv | car_evaluation | .csv | 51916 | 50.7 KiB | 1729 | comma |
| 3 | /content/sample_data/iris.csv | iris | .csv | 4606 | 4.5 KiB | 151 | comma |
| 4 | /content/sample_data/wine_quality.csv | wine_quality | .csv | 414831 | 405.1 KiB | 6498 | comma |
| 5 | /content/sample_data/california_housing_test.csv | california_housing_test | .csv | 301141 | 294.1 KiB | 3001 | comma |
| 6 | /content/sample_data/california_housing_train.csv | california_housing_train | .csv | 1706430 | 1.6 MiB | 17001 | comma |
Checkout the example.py file and then run it from a terminal with python as the following code, or using a Jupyter notebook.
Using the dataframe df_files
generated in the explore phase, you can generate
working python pandas code to be used.
The function generate_files()
will generate python code to load the files using
pandas
.
from afes import afe
# Path to folder with files to be explored
TARGET_FOLDER = "<PATH_TO_FILES_TO_EXPLORE>"
OUTPUT_FOLDER = "<PATH_TO_OUTPUTS>"
df_files = afe.explore_files(TARGET_FOLDER)
afe.generate_code(df_files)
The generated code will look like this:
### Start of the code ###
import pandas as pd
df_auto_mpg = pd.read_csv('/content/sample_data/auto_mpg.csv', sep = ',')
df_car_evaluation = pd.read_csv('/content/sample_data/car_evaluation.csv', sep = ',')
df_iris = pd.read_csv('/content/sample_data/iris.csv', sep = ',')
df_wine_quality = pd.read_csv('/content/sample_data/wine_quality.csv', sep = ',')
df_california_housing_test = pd.read_csv('/content/sample_data/california_housing_test.csv', sep = ',')
df_california_housing_train = pd.read_csv('/content/sample_data/california_housing_train.csv', sep = ',')
### End of the code ###
"code.txt" has the generated Python code to load the files.
By default the code is printed to the standard output but also written by
default to the ./code.txt
file.
Note: you can replace the
.txt
extension by.py
to make it a working Python script.
Using the dataframe df_files
generated in the explore phase, the function
profile(df_files)
will automatically load and profiline the files using
ydata-profiling or
sweetviz.
# Path to folder with files to be explored
TARGET_FOLDER = "<PATH_TO_FILES_TO_EXPLORE>"
OUTPUT_FOLDER = "<PATH_TO_OUTPUTS>"
# Run exploration on the files
df_files = afe.explore_files(TARGET_FOLDER)
afe.profile_files(df_files, profile_tool="ydata-profiling", output_path=OUTPUT_FOLDER) # or
afe.profile_files(df_files, profile_tool="sweetviz", output_path=OUTPUT_FOLDER)
By default, it will process the files using ydata-profiling
by size order
starting with the smallest file. It will create the reports and export them in
HTML format. It will store the reports in the same directory where the code is
running or it save them in a given directory with the
output_path = '<YOUR_OUTPUT_PATH>'
argument.
- Open an issue to request more
- functionalities or feedback.