-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
17 changed files
with
1,910 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
output/* | ||
__pycache__* | ||
.vscode* | ||
.DS_Store* | ||
dataset/Meshes* | ||
dataset/Sketches* |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
# Sketch2Mesh: Reconstructing and Editing 3D Shapes from Sketches | ||
|
||
![](figs/car.gif) ![](figs/chair.gif) | ||
|
||
This is the PyTorch implementation of the ICCV 2021 paper [Sketch2Mesh](https://arxiv.org/abs/2104.00482). We provide pre-trained networks and code for demonstrating our global differentiable refinement procedure of 3D shapes from 2D sketches. | ||
|
||
The below instructions describe how to: | ||
1. [setup the python environment](#setup-environment) | ||
2. [download data](#Download-the-test-set) | ||
3. [download pre-trained networks](#Download-pre-trained-networks) | ||
4. [launch refinement](#Launch-reconstruction-and-optimization) | ||
5. [read metrics](#Parallelization) | ||
|
||
## Setup environment | ||
Set up a conda environment with the right packages using: | ||
``` | ||
conda env create -f conda_env.yml | ||
conda activate sketch2mesh | ||
``` | ||
|
||
## Download the test set | ||
|
||
We provide our test set in the form of an archive containing | ||
[sketches](https://drive.google.com/file/d/1Zwp5MdvHY13zjF5KndueBpSBsqW_9Ip1/view?usp=sharing) (~8MB) and the associated | ||
[meshes](https://drive.google.com/file/d/1iAr12e3cqribB7jDGogLToxtzRNZP82M/view?usp=sharing) (~530MB). The latter is a subset of [ShapeNet](https://shapenet.org/) meshes that were pre-processed by [DISN](https://github.com/laughtervv/DISN) authors. | ||
|
||
To download both sketches and meshes directly at the right location using [gdown](https://github.com/wkentaro/gdown) (already installed if you followed the above setup with conda), from the root folder of the cloned repo use: | ||
|
||
``` | ||
cd dataset | ||
gdown https://drive.google.com/uc?id=1Zwp5MdvHY13zjF5KndueBpSBsqW_9Ip1 | ||
gdown https://drive.google.com/uc?id=1iAr12e3cqribB7jDGogLToxtzRNZP82M | ||
unzip Sketches.zip | ||
unzip Meshes.zip | ||
rm Sketches.zip | ||
rm Meshes.zip | ||
cd .. | ||
``` | ||
|
||
## Download pre-trained networks | ||
Pre-trained encoder-decoder networks for sketches of [cars](https://drive.google.com/file/d/1C09_0RMiG2on8rvEqo3z79GzDoGvI3I2/view?usp=sharing) and [chairs](https://drive.google.com/file/d/1MEf4p-MaSVzL9v3i1GTMzJogM_0ciz6y/view?usp=sharing) (~35MB each) should be downloaded to the `output` directory using: | ||
``` | ||
mkdir output | ||
cd output | ||
gdown https://drive.google.com/uc?id=1C09_0RMiG2on8rvEqo3z79GzDoGvI3I2 | ||
gdown https://drive.google.com/uc?id=1MEf4p-MaSVzL9v3i1GTMzJogM_0ciz6y | ||
unzip cars.zip | ||
unzip chairs.zip | ||
rm cars.zip | ||
rm chairs.zip | ||
cd .. | ||
``` | ||
|
||
These networks were trained on the Suggestive sketching style (see main paper). | ||
|
||
## Launch reconstruction and optimization | ||
|
||
Reconstruction and refinement from a collection of input sketches is done in `reconstruct_sketch2mesh.py`, with the following options: | ||
|
||
* `--experiment` : relative path to either the chairs (`output/chairs`) or cars (`output/cars`) pre-trained network directory, | ||
* `--out_dir` : output sub-directory where optimized meshes will be stored, | ||
* `--sketch_style` : style of the input sketches, from `[fd | suggestive | handdrawn (for cars only)]`. See the main paper (Sec. 4.1) for more explanations. | ||
|
||
For example, to launch reconstruction + refinement on hand drawn cars: | ||
``` | ||
python reconstruct_sketch2mesh.py --experiment output/cars --out_dir sugg_to_hand --sketch_style handdrawn | ||
``` | ||
|
||
### Parallelization | ||
|
||
We provide a very simplistic parallelized implementation, using additional options `--n` and `--N`. The list of test shapes is divided into `N` equal chunks, and the `n`-th launched process handles the `n`-th chunk. For example, launching 6 reconstruction threads in parallel for the above reconstruction is done with | ||
|
||
``` | ||
(python reconstruct_sketch2mesh.py --experiment output/cars --out_dir sugg_to_hand --sketch_style handdrawn --N 6 --n 1 & | ||
python reconstruct_sketch2mesh.py --experiment output/cars --out_dir sugg_to_hand --sketch_style handdrawn --N 6 --n 2 & | ||
python reconstruct_sketch2mesh.py --experiment output/cars --out_dir sugg_to_hand --sketch_style handdrawn --N 6 --n 3 & | ||
python reconstruct_sketch2mesh.py --experiment output/cars --out_dir sugg_to_hand --sketch_style handdrawn --N 6 --n 4 & | ||
python reconstruct_sketch2mesh.py --experiment output/cars --out_dir sugg_to_hand --sketch_style handdrawn --N 6 --n 5 & | ||
python reconstruct_sketch2mesh.py --experiment output/cars --out_dir sugg_to_hand --sketch_style handdrawn --N 6 --n 6) | ||
``` | ||
|
||
## Read metrics | ||
Once the above has been performed, provide `read_metrics.py` with the path to reconstructed shapes to get 3D metrics before/after refinement. For example: | ||
``` | ||
python read_metrics.py -d output/cars/Optimizations/latest/sugg_to_hand/ShapeNetV2/02958343/ | ||
> Across 113 shapes: | ||
> - Average initial 3D Chamfer: 6.835395413599249 | ||
> - After refinement: 3.7756478764215666 | ||
``` | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,212 @@ | ||
name: sketch2mesh | ||
channels: | ||
- pytorch3d | ||
- pytorch | ||
- bottler | ||
- iopath | ||
- fvcore | ||
- conda-forge | ||
- defaults | ||
dependencies: | ||
- _libgcc_mutex=0.1=conda_forge | ||
- _openmp_mutex=4.5=1_llvm | ||
- _pytorch_select=0.1=cpu_0 | ||
- alsa-lib=1.2.3=h516909a_0 | ||
- blas=1.0=mkl | ||
- brotlipy=0.7.0=py38h497a2fe_1001 | ||
- bzip2=1.0.8=h7f98852_4 | ||
- ca-certificates=2021.5.30=ha878542_0 | ||
- cached-property=1.5.2=py_0 | ||
- cairo=1.16.0=h6cf1ce9_1008 | ||
- certifi=2021.5.30=py38h578d9bd_0 | ||
- cffi=1.14.6=py38ha65f79e_0 | ||
- chardet=4.0.0=py38h578d9bd_1 | ||
- colorama=0.4.4=pyh9f0ad1d_0 | ||
- cryptography=3.4.7=py38ha5dfef3_0 | ||
- cudatoolkit=10.2.89=hfd86e86_1 | ||
- dbus=1.13.6=h48d8840_2 | ||
- easydict=1.9=py_0 | ||
- expat=2.4.1=h9c3ff4c_0 | ||
- ffmpeg=4.3.2=hca11adc_0 | ||
- filelock=3.1.0=pyhd8ed1ab_0 | ||
- fontconfig=2.13.1=hba837de_1005 | ||
- freetype=2.10.4=h5ab3b9f_0 | ||
- fvcore=0.1.5.post20210915=py38 | ||
- gdown=3.13.1=pyhd8ed1ab_0 | ||
- gettext=0.19.8.1=h0b5b191_1005 | ||
- glib=2.68.4=h9c3ff4c_0 | ||
- glib-tools=2.68.4=h9c3ff4c_0 | ||
- gmp=6.2.1=h58526e2_0 | ||
- gnutls=3.6.13=h85f3911_1 | ||
- graphite2=1.3.13=h58526e2_1001 | ||
- gst-plugins-base=1.18.5=hf529b03_0 | ||
- gstreamer=1.18.5=h76c114f_0 | ||
- h5py=3.2.1=py38h6c542dc_0 | ||
- harfbuzz=2.9.1=h83ec7ef_0 | ||
- hdf5=1.10.6=hb1b8bf9_0 | ||
- icu=68.1=h58526e2_0 | ||
- intel-openmp=2021.3.0=h06a4308_3350 | ||
- iopath=0.1.9=py38 | ||
- jasper=1.900.1=h07fcdf6_1006 | ||
- jbig=2.1=h7f98852_2003 | ||
- jpeg=9d=h36c2ea0_0 | ||
- krb5=1.19.2=hcc1bbae_0 | ||
- lame=3.100=h7f98852_1001 | ||
- lcms2=2.12=h3be6417_0 | ||
- ld_impl_linux-64=2.35.1=h7274673_9 | ||
- lerc=2.2.1=h9c3ff4c_0 | ||
- libblas=3.9.0=11_linux64_mkl | ||
- libcblas=3.9.0=11_linux64_mkl | ||
- libclang=11.1.0=default_ha53f305_1 | ||
- libdeflate=1.7=h7f98852_5 | ||
- libedit=3.1.20191231=he28a2e2_2 | ||
- libevent=2.1.10=hcdb4288_3 | ||
- libffi=3.3=he6710b0_2 | ||
- libgcc-ng=11.2.0=h1d223b6_8 | ||
- libgfortran-ng=7.5.0=ha8ba4b0_17 | ||
- libgfortran4=7.5.0=ha8ba4b0_17 | ||
- libglib=2.68.4=h3e27bee_0 | ||
- libiconv=1.16=h516909a_0 | ||
- liblapack=3.9.0=11_linux64_mkl | ||
- liblapacke=3.9.0=11_linux64_mkl | ||
- libllvm11=11.1.0=hf817b99_2 | ||
- libogg=1.3.4=h7f98852_1 | ||
- libopencv=4.5.3=py38h5627943_1 | ||
- libopus=1.3.1=h7f98852_1 | ||
- libpng=1.6.37=hbc83047_0 | ||
- libpq=13.3=hd57d9b9_0 | ||
- libprotobuf=3.16.0=h780b84a_0 | ||
- libstdcxx-ng=11.2.0=he4da1e4_8 | ||
- libtiff=4.3.0=hf544144_1 | ||
- libuuid=2.32.1=h7f98852_1000 | ||
- libuv=1.40.0=h7b6447c_0 | ||
- libvorbis=1.3.7=h9c3ff4c_0 | ||
- libwebp-base=1.2.1=h7f98852_0 | ||
- libxcb=1.13=h7f98852_1003 | ||
- libxkbcommon=1.0.3=he3ba5ed_0 | ||
- libxml2=2.9.12=h72842e0_0 | ||
- llvm-openmp=12.0.1=h4bd325d_1 | ||
- lz4-c=1.9.3=h295c915_1 | ||
- mkl=2021.3.0=h06a4308_520 | ||
- mkl-service=2.4.0=py38h7f8727e_0 | ||
- mkl_fft=1.3.0=py38h42c9631_2 | ||
- mkl_random=1.2.2=py38h51133e4_0 | ||
- mysql-common=8.0.25=ha770c72_2 | ||
- mysql-libs=8.0.25=hfa10184_2 | ||
- ncurses=6.2=he6710b0_1 | ||
- nettle=3.6=he412f7d_0 | ||
- ninja=1.10.2=hff7bd54_1 | ||
- nspr=4.30=h9c3ff4c_0 | ||
- nss=3.69=hb5efdd6_0 | ||
- numpy=1.20.3=py38hf144106_0 | ||
- numpy-base=1.20.3=py38h74d4b33_0 | ||
- nvidiacub=1.10.0=0 | ||
- olefile=0.46=pyhd3eb1b0_0 | ||
- opencv=4.5.3=py38h578d9bd_1 | ||
- openh264=2.1.1=h780b84a_0 | ||
- openjpeg=2.4.0=h3ad879b_0 | ||
- openssl=1.1.1l=h7f98852_0 | ||
- pcre=8.45=h9c3ff4c_0 | ||
- pillow=8.3.1=py38h2c7a002_0 | ||
- pixman=0.40.0=h36c2ea0_0 | ||
- portalocker=2.3.2=py38h578d9bd_0 | ||
- pthread-stubs=0.4=h36c2ea0_1001 | ||
- py-opencv=4.5.3=py38he5a9106_1 | ||
- pycparser=2.20=pyh9f0ad1d_2 | ||
- pyopenssl=20.0.1=pyhd8ed1ab_0 | ||
- pysocks=1.7.1=py38h578d9bd_3 | ||
- python=3.8.11=h12debd9_0_cpython | ||
- python_abi=3.8=2_cp38 | ||
- pytorch=1.7.1=py3.8_cuda10.2.89_cudnn7.6.5_0 | ||
- pytorch3d=0.5.0=py38_cu102_pyt171 | ||
- pyyaml=5.4.1=py38h497a2fe_0 | ||
- qt=5.12.9=hda022c4_4 | ||
- readline=8.1=h27cfd23_0 | ||
- requests=2.26.0=pyhd8ed1ab_0 | ||
- setuptools=58.0.4=py38h06a4308_0 | ||
- six=1.16.0=pyhd3eb1b0_0 | ||
- sqlite=3.36.0=hc218d9a_0 | ||
- tabulate=0.8.9=pyhd8ed1ab_0 | ||
- termcolor=1.1.0=py_2 | ||
- tk=8.6.10=hbc83047_0 | ||
- torchvision=0.8.2=cpu_py38ha229d99_0 | ||
- tqdm=4.62.3=pyhd8ed1ab_0 | ||
- typing_extensions=3.10.0.2=pyh06a4308_0 | ||
- urllib3=1.26.7=pyhd8ed1ab_0 | ||
- wheel=0.37.0=pyhd3eb1b0_1 | ||
- x264=1!161.3030=h7f98852_1 | ||
- xorg-kbproto=1.0.7=h7f98852_1002 | ||
- xorg-libice=1.0.10=h7f98852_0 | ||
- xorg-libsm=1.2.3=hd9c2040_1000 | ||
- xorg-libx11=1.7.2=h7f98852_0 | ||
- xorg-libxau=1.0.9=h7f98852_0 | ||
- xorg-libxdmcp=1.1.3=h7f98852_0 | ||
- xorg-libxext=1.3.4=h7f98852_1 | ||
- xorg-libxrender=0.9.10=h7f98852_1003 | ||
- xorg-renderproto=0.11.1=h7f98852_1002 | ||
- xorg-xextproto=7.3.0=h7f98852_1002 | ||
- xorg-xproto=7.0.31=h7f98852_1007 | ||
- xz=5.2.5=h7b6447c_0 | ||
- yacs=0.1.6=py_0 | ||
- yaml=0.2.5=h516909a_0 | ||
- zlib=1.2.11=h7b6447c_3 | ||
- zstd=1.5.0=ha95c52a_0 | ||
- pip: | ||
- attrs==21.2.0 | ||
- black==21.9b0 | ||
- charset-normalizer==2.0.6 | ||
- click==8.0.1 | ||
- configparser==5.0.2 | ||
- cycler==0.10.0 | ||
- docker-pycreds==0.4.0 | ||
- flake8==3.9.2 | ||
- flake8-bugbear==21.9.1 | ||
- flake8-comprehensions==3.6.1 | ||
- gitdb==4.0.7 | ||
- gitpython==3.1.24 | ||
- idna==3.2 | ||
- imageio==2.9.0 | ||
- isort==5.9.3 | ||
- jsonpatch==1.32 | ||
- jsonpointer==2.1 | ||
- kiwisolver==1.3.2 | ||
- matplotlib==3.4.3 | ||
- mccabe==0.6.1 | ||
- mypy-extensions==0.4.3 | ||
- networkx==2.6.3 | ||
- pandas==1.3.3 | ||
- pathspec==0.9.0 | ||
- pathtools==0.1.2 | ||
- pip==21.2.4 | ||
- platformdirs==2.3.0 | ||
- plotly==5.3.1 | ||
- plyfile==0.7.4 | ||
- promise==2.3 | ||
- protobuf==3.18.0 | ||
- psutil==5.8.0 | ||
- pycodestyle==2.7.0 | ||
- pyflakes==2.3.1 | ||
- pyparsing==2.4.7 | ||
- python-dateutil==2.8.2 | ||
- pytz==2021.1 | ||
- pywavelets==1.1.1 | ||
- pyzmq==22.3.0 | ||
- regex==2021.8.28 | ||
- scikit-image==0.18.3 | ||
- scipy==1.7.1 | ||
- sentry-sdk==1.4.1 | ||
- shortuuid==1.0.1 | ||
- smmap==4.0.0 | ||
- subprocess32==3.5.4 | ||
- tenacity==8.0.1 | ||
- tifffile==2021.8.30 | ||
- tomli==1.2.1 | ||
- torchdiffeq==0.2.2 | ||
- torchfile==0.1.0 | ||
- tornado==6.1 | ||
- trimesh==3.9.31 | ||
- visdom==0.1.8.9 | ||
- wandb==0.12.2 | ||
- websocket-client==1.2.1 | ||
- yaspin==2.1.0 | ||
prefix: /miniconda/envs/pytorch3d |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
{"ShapeNetV2": {"02958343": ["d0cd9b6ca511c6b9920355ae987b66f1", "90ba6416acd424e06d8db5f653b07b4b", "6710c87e34056a29aa69dfdc5532bb13", "641a0da53609ee3028920f0e0293b366", "30045ee0751d6ee88b3ab49d2e0e41ab", "cadd53fdbf69727721f6e2b0f75cf9c4", "768ea3241699f663f1cb19f636b1c2bd", "26c2c91d8eb660ecbeaa545f7f633287", "1f5a6d3c74f32053b6163196882ac0ca", "1836f75baa094cd9372ca62e6806c5c3", "a476444d87bc7aeb1699b1ed8dbb7ad7", "67c229c70e64a25e69c2e0a91b39f742", "6c39e401487c95e9ee897525d11b0599", "a5b7cc1a5ab2828b28b0b7b876595fb8", "e7e94f8dbbe8c1e9784da3853aae78cd", "e7f94161bd90444f8cf4cf458d5ff7b", "29c0b746704727593030e8e3910d2b3b", "4ebf1a8cbbd4a05228044fe9244db50a", "151bebc457224c2733d7c9e122eec9b6", "ae852f7f30bfdbcdf9d73bbb584eaa42", "86c8a3137a716d70e742b0b5e87bec54", "c23a65ae787245248580e2c19c4f9aaf", "b659b096b9cd0de093532d4a06abe81", "4ef6af15bcc78650bedced414fad522f", "a8f7a7271a02fd56afe1d4530f4c6e24", "2b800f158324986ab6f657757c95f74e", "ffbb51fcc3955d01b67c620b30c63392", "2a1523ee15233761d9f8911ce020a037", "3d81e36e5252c8f0becf71e2e014ff6f", "77d9a23f45c888e595551e0d9e50cb0d", "c5f77a00c9cae334cfd826dd468a5497", "ae1c1141ce4bfde9d66a73de5847ea37", "c6a7b37a33b5eef728af9bd424dcd6fa", "df72f352c7fedcfad9951d9ecda74409", "e84eb770bb6cedf3bda733a39f84326d", "32e6ee437b8fa3fb5e52943dcb52313c", "e7add7a018da8056bda733a39f84326d", "1f416598fe329a88b1bb46d2556ba67d", "74b4d0c4ba72eba8473f10e6caaeca56", "dd0b595b15a7203e185ce5d54f27f6b9", "9698be0fd3516f01fbeda5389ab05f5f", "b1ad30609c2fa8a2d63b3823877bfa70", "3b41ffcb4bec60cc21a66e8dfcce514a", "1b94aad142e6c2b8af9f38a1ee687286", "6ddb807414fa23e0d9f8911ce020a037", "616279642d73621812f039db97ce1ef", "83c31a4085063873dc2afbe43bc71afa", "f9cad36ae25540a0bb20fd1bc4860856", | ||
"c6ca5b48d1e5f5ab89442e34f9143192", "29b714c4aee36c9d6108f064aff2426d", "12d7c4013415ea147f5b0cb87a91de52", "a55f4932b0f8a212402257734064a917", "158a95b4da25aa1fa37f3fc191551700", "d838c8cb52c92df3b112e5ac235c21b7", "c4744d66623e04b7518f93fcf50bd8df", "aff67f837a958d2329984c4afd2e98a4", "1c5a350ea0f55f793fbce9ec40e1f047", "206e39a5f67f4a4a81d0c86cc18e6647", "614d683fa574cd817fea5423f91210c9", "89c7e63c3d3d14aa17b597d473206848", "ac85727971fe63dd2c67ef33d7521ade", "2e37a9a6abbdf6cf25d175f53644eac1", "bbaef5a610b0b4d5368f3995546e59c8", "a077e24f8983d3d3476c231adfa21265", "c6762641f741acc2a19bced881c9e641", "83c21f0f383524e9bdd7ac383509f04c", "2f503625718536ad5d9d397842621b7", "ceb561c72a407ddfdc50a691c68014fd", "3a735f1a5fe8906cab0fd77f2e9aa584", "37e781aa8ae8933a61c6c61410fc904b", "5881807902ace2dc7d26edf2a8ffb68", "3a5ce33bac316d8f6379c5e421c1d27", "2fe4a878e34bd3bab8013668e30e23b0", "e0b9bb886c578be86e9dcc2d1ea2784d", "ab2759c8e0cf3b8da9d243597c4c2c2e", "2e27309be42276bebecf71e2e014ff6f", "6c1568ee8807fb73aa69dfdc5532bb13", "f7362613dfd3772faa69dfdc5532bb13", "e3dff7195a2026dba4db43fa521d5c03", "fa1b3bcdbda309a439cc19d48e3f4f5", "4a6dea7ffa04531cf63ee8a34069b7c5", "bf0e8d944ba4843e94e7e8e27399daf7", "ad45b2d40c7801ef2074a73831d8a3a2", "5c542cd5371a631d6436916a86a90ed7", "884014d60de73249af551becaeca18e5", "eadebe4328e2c7d7c10520be41d00de2", "2236a1b9cde71eff13d31c5a107f3c4", "8fe901ed95e115ed70a5d1d8432b5405", "58569e7feac27d3e5da8146fec888d45", "97831a753d80d66dfd24692312e9de8c", "ab8b6d39057d2f6cc86779a6788ad464", "eeac3253fc4c0b429092ea6b09901598", "34211d29d94cbd52b7c4f0665aafbacd", "7121e0332f0c2e0551a95aaa6caba1d3", "9171272d0e357c40435b5ce06ecf3e86", "56478692749392a19dfd5136ef0f2af", "d164a37bffeb5a83f04c8b6c3407554", "b866d7e1b0336aff7c719d2d87c850d8", "5dde5594b4e9e86ce60ff101126e254", "86d5ba5d14672ae7becf71e2e014ff6f", "180d1e3463c29355bda72093f9b5aa73", "6eba2ec65e8e44ed5545896d1a9ff5d3", "f21bd46dced01bd835da01f298003d56", "12410830e8a5067c69576518bd9bfe48", "c6eebcd03aaa9060e7a6de039856f1eb", "a3881c3f4e8c807f2a9eb0f146e94477", "49a93fdbcaa0302ae434963ea517a487", "b30efada80553a1d202258c0423dde73", "f84ba2039d0a4ec5afe717997470b28d", "a6fe523f0ef082a2715e04edb8af9c53", "50e3333f66829c8fbe40bb45ea25a041", "a532b61524432d454ed192f2298faac", "29fc55965346a53733d7c9e122eec9b6"]}} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
{"ShapeNetV2": {"03001627": ["ed751e0c20f48b3226fc87e2982c8a2b", "d72f27e4240bd7d0283b00891f680579", "5fa533f71e7e041efebad4f49b26ec52", "8bb332c5afe67f8d917b96045c9b6dea", "9a82269e56737217e16571f1d370cad9", "d9159a24fb0259b7febad4f49b26ec52", "e642ac79a2517d0054f92a30b31f64e", "caa330f85a6d6db7a17ae19fa77775ff", "4171071eb30dcb412dd4967de4160123", "1d9dbebcbb82682bf27a705edb2f9ba6", "df51cb83f0e55b81d85934de5898f0b", "7fe08cd7a9b76c1dcbde89e0c48a01bf", "33c4f94e97c3fefd19fb4103277a6b93", "764866604b035caacd0362ae35d1beb4", "6bd633162adccd29c3bd24f986301745", "ed7b1be61b8e78ac5d8eba92952b9366", "4719c75b8ce30de84b3c42e318f3affc", "6b32d3a9198f8b03d1dcc55e36186e4e", "ed953e5d1ce7a4bee7697d561711bd2b", "eb04d1bffae6038c4c7384dbb75cab0d", "64f6991a3688f8a0e49fc3668cb02f74", "5ee976518fc4f5c8664b3b9b23ddfcbc", "72da95dd6a486a4d4056b9c3d62d1efd", "18bf93e893e4069e4b3c42e318f3affc", "92e6546c4aca4ed14b96b665a8ac321", "c520bc9dde7c0a19d2afe8d5254a0d04", "875925d42780159ffebad4f49b26ec52", "953a6c4d742f1e44d1dcc55e36186e4e", "64ef0e07129b6bc4c3bd24f986301745", "b3a9c49a1924f99815f855bb1d7c4f07", "73b7d6df845221fa9a2041f674671d05", "6a00357a35d0574b8d7d306df70cbb46", "ff8921eb06e95b9cfebad4f49b26ec52", "9b902b5c6570acb314b96b665a8ac321", "8176364215748b23490ad276cd2af3a4", "6dfb7b5b4bd0d5f9febad4f49b26ec52", "b9d60d124e24849d37b2bb75885cfc44", "cf24fc2d10f8da31283b00891f680579", "c709aa613431c0538a653a9f65a410f6", "5141e8716b98a16d632786b910371d31", "4a329240c6a9d2547b11ae648ea92233", "25196058a95b4fc3359e362142e70c8d", "6d78523e939aedd482e23b5f9fd46e1e", "60c0c32187f4e2ddf51f77a6d7299806", "7facccfa81369078a8930422448288ea", "55eeb952519ceb87c3bd24f986301745", "2499541ace317cbb8cb5d9909aeb1309", "9979c8433d92fd80d1dcc55e36186e4e", "b72342e210414024e3e472a115551ec9", "8a5d60067de905336c183a120a388982", "776c1d1857a4ea3d853c3fc864dd58b7", "bc76dfa9e0a91e131e06124bec25a766", "a094ba480568333819fb4103277a6b93", "d621bfa4a44a98e3829e1f3c4926c485", "97da84d5d78d84cc2360e5e238139587", "a1e6226c3a23ec808a653a9f65a410f6", "1e53d84e48bb7d25febad4f49b26ec52", "106a0dbaead5066519fb4103277a6b93", "22ada577361ed0374b3c42e318f3affc", "a4d7c8b97066cb74f63e8e405d49b8ce", "5623d0ec9efedbc9d4da89766e80607a", "a2824df0ddb58c0617b431cae0dd70ed", "9b4d530487df4aa94b3c42e318f3affc", "8f0deb6b599006a22cc460e9d064e57d", "2718b1d46ca52df052bfb1d5ec273240", "2403b6769a03c8a466ab323d8f805a57", "a345ea2820d2f4af7ff6ace05b36a5", "1f501c5ed6423e259c89c86daa5af59d", "e440059fcf6f36496ebf11292bdb9130", "b1add8182311f2a9f71e06115e9c3b3e", "e4a890f2330ebd7e4a11872aa986426d", "9d0b25421c13008e35836c728d324152", "7661a325724ae00acd0362ae35d1beb4", "f551bf7431e0fd7cf937a9747c26991f", "7727d0eef3eeb3ba73b2b620da30da86", "5607b02869c1f8a019fb4103277a6b93", "6dddf2b95ca09bf5febad4f49b26ec52", "77e7660d71c6f3befebad4f49b26ec52", "8affc6302970a589febad4f49b26ec52", "47cd848a5584867b1e8791c225564ae0", "7f2f8dd929421cd130e6a28391d443c5", "97326604c5fdff1febad4f49b26ec52", "8ec79ed07c19aa5cfebad4f49b26ec52", "c0c823f094d972c94b3c42e318f3affc", "780aec25d416fa07ca9b40e76e725878", "317a2cc9f3b54a48283b00891f680579", "77fbfd2f194ed73975aa7f24a9b6003a", "4246c8c293c56ea34b3c42e318f3affc", "9b12d223347d4bdd4a11872aa986426d", "cc3d9160369d09845e61ef8e2af97499", "e69e032ca0bd60a4febad4f49b26ec52", "9dac39c51680daa2f71e06115e9c3b3e", "31a3884f500d9fa2025d98fb9de28cb", "19ce953da9aa8065d747a43c11e738e9", "fdef0425d385c1cadef295ef48e5307c", "d48dac046436a29ec3bd24f986301745", "c65cd2f7588764872b70eac6546e93fd", "1e6f06d182094d4ffebad4f49b26ec52", "695a02a5620aae6e78eec18a8a3356a2", "bd0918d75e22cbf9febad4f49b26ec52", "cfb40e7b9990da99c2f927df125f5ce4", "cc5b5e367ad8eaf19fb4103277a6b93", "d0894aed032460fafebad4f49b26ec52", "650d540bac31f56ffebad4f49b26ec52", "88bdfdfb2a8b94ca1b17743c18fb63dc", "fb794b0b3260794bfebad4f49b26ec52", "c1e8b1bd34874c83febad4f49b26ec52", "fd8c375d0a267d20283b00891f680579", "8c0a0360a7353ec26dd3cca80cedd415", "1e68489b0dc2bfc3327289c00b6dc9ca", "689f7ad63ed9a7baa75d03186a0409e2", "46d7e85d80411f50a094848ea4d06501", "ea5c19a6ea9b13719fb4103277a6b93", "325bf2aee84a1fcdfebad4f49b26ec52", "59fd3d1409c0ee2e47bc3701b998a7d5", "8707cf0c311ba8f34b3c42e318f3affc", "c9dc5d85ea3bf4d8a1088e4f586b1246", "b1c221e3ec7fe34782b50ea5cffa80bd", "e4a93adf5399b23419fb4103277a6b93", "453a678dec4e9d40f36ea1eb6542fe7e", "9a91a491a9e74ab132c074e5313866f2", "d04d854533d618fbfebad4f49b26ec52", "a5df9c511f51228f19fb4103277a6b93", "6af8d7bfa508b8d23759750e8db40476", "ce474d7c415941acfebad4f49b26ec52", "46c8f742ae31294cb4a4ddb21cda79e5", "de3e082195346ca419fb4103277a6b93"]}} |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
from lib.data import * | ||
from lib.mesh import * |
Oops, something went wrong.