Skip to content
/ scrstudio Public

A unified framework for Scene Coordinate Regression-based visual localization

License

Notifications You must be signed in to change notification settings

cvg/scrstudio

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SCRStudio
A Unified Framework for Scene Coordinate Regression

About

SCRStudio is a unified and modular framework for Scene Coordinate Regression (SCR)-based visual localization, built on top of the nerfstudio project.

This library provides an interpretable and modular implementation of SCRs, breaking down components such as input encoding, network architecture, and supervision strategies. It offers a unified implementation of three major SCR methods: ACE, GLACE, and R-SCoRe. SCRStudio supports various pretrained local encodings (both sparse and dense) while incorporating state-of-the-art techniques for integrating global encodings.

Quickstart

This guide will help you get started with the default R-SCoRe SCR model trained on the classic Aachen dataset.

1. Installation: Setup the Environment

Create Environment

We recommend using conda to manage dependencies. Make sure to install Conda before proceeding.

Install Dependencies

Install PyTorch with CUDA (tested with CUDA 12.1 and 12.4). PyTorch Geometric and cuML are also required for encoding preprocessing.

For CUDA 12.4:

conda create -n scrstudio python=3.10 pytorch=2.5.1 torchvision=0.20.1 pytorch-cuda=12.4 cuml=25.02 -c pytorch  -c rapidsai -c conda-forge -c nvidia
conda activate scrstudio
pip install --upgrade pip
pip install torch_geometric
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.5.1+cu124.html

Install SCRStudio

git clone --recursive https://github.com/cvg/scrstudio.git
cd scrstudio
pip install --upgrade pip setuptools
pip install -e .

2. Train Your First Model

The following steps will train a scrfacto model, our recommended model for large scenes.

Download the Data

# Download Aachen dataset:
scr-download-data aachen
# Download specific capture for NAVER Lab dataset:
scr-download-data naver --capture-name dept_1F

Preprocessing for Training

scrfacto follows the methodology from R-SCoRe (paper), utilizing PCA for local encoding dimensionality reduction and Node2Vec for learning global encodings.

Local Encoding: PCA Compression

To reduce GPU memory usage for local encoding buffer, apply PCA on local encodings:

# Compute PCA for Dedode local encodings on Aachen dataset
scr-encoding-pca dedode --encoder.detector L --encoder.descriptor B --n_components 128 --data data/aachen

This saves the PCA components as PyTorch state dictionary at: data/aachen/proc/pcad3LB_128.pth

Global Encoding: Covisibility Graph & Node2Vec Training

Compute the pose overlap score for training images:

scr-overlap-score --data data/aachen/train --max_depth 50

This saves a sparse COO format overlap matrix at: data/aachen/train/pose_overlap.npz

Train a Node2Vec model on this graph:

scr-train node2vec --data data/aachen --pipeline.model.graph pose_overlap.npz --pipeline.model.edge_threshold 0.2

Use the trained global encoding:

cp outputs/aachen/node2vec/<timestamp>/scrstudio_models/head.pt data/aachen/train/pose_n2c.pt

Model Training

Now, train the scrfacto model:

scr-train scrfacto --data data/aachen --pipeline.datamanager.train_dataset.feat_name pose_n2c.pt

Results are saved in outputs/aachen/scrfacto/<timestamp>.

3. Evaluation

Preprocessing for Evaluation

Compute NetVLAD retrieve features and compress them with Product Quantization (PQ):

scr-retrieval-feat --data data/aachen/train --pq

Results are saved in data/aachen/train/netvlad_feats_pq.pkl

Running Evaluation

Compute retrieval features for test images and run evaluation:

scr-retrieval-feat --data data/aachen/test
scr-eval --load-config outputs/aachen/scrfacto/<timestamp>/config.yml --split test

Release Plan

We are actively preparing SCRStudio for public release. Below is the tentative schedule:

  • March 2025: Initial release of SCRStudio.
  • April 2025: SCRStudio Viewer.

Publications

This code builds on previous camera relocalization pipelines, namely DSAC, DSAC++, DSAC*, ACE, GLACE, and R-SCoRe. Please consider citing:

@inproceedings{brachmann2017dsac,
  title={{DSAC}-{Differentiable RANSAC} for Camera Localization},
  author={Brachmann, Eric and Krull, Alexander and Nowozin, Sebastian and Shotton, Jamie and Michel, Frank and Gumhold, Stefan and Rother, Carsten},
  booktitle={CVPR},
  year={2017}
}

@inproceedings{brachmann2018lessmore,
  title={Learning less is more - {6D} camera localization via {3D} surface regression},
  author={Brachmann, Eric and Rother, Carsten},
  booktitle={CVPR},
  year={2018}
}

@article{brachmann2021dsacstar,
  title={Visual Camera Re-Localization from {RGB} and {RGB-D} Images Using {DSAC}},
  author={Brachmann, Eric and Rother, Carsten},
  journal={TPAMI},
  year={2021}
}

@inproceedings{brachmann2023ace,
    title={Accelerated Coordinate Encoding: Learning to Relocalize in Minutes using RGB and Poses},
    author={Brachmann, Eric and Cavallari, Tommaso and Prisacariu, Victor Adrian},
    booktitle={CVPR},
    year={2023},
}

@inproceedings{wang2024glace,
    title={Glace: Global local accelerated coordinate encoding},
    author={Wang, Fangjinhua and Jiang, Xudong and Galliani, Silvano and Vogel, Christoph and Pollefeys, Marc},
    booktitle={CVPR},
    year={2024}
}

@inproceedings{jiang2025rscore,
      title={R-SCoRe: Revisiting Scene Coordinate Regression for Robust Large-Scale Visual Localization},
      author={Jiang, Xudong and Wang, Fangjinhua and Galliani, Silvano and Vogel, Christoph and Pollefeys, Marc},
      booktitle = {CVPR},
      year={2025}
}

Releases

No releases published

Packages

No packages published