-
Notifications
You must be signed in to change notification settings - Fork 0
/
MA_Shape.py
332 lines (296 loc) · 10.7 KB
/
MA_Shape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#pylint: skip-file
import torch
import os
import time
import seaborn as sns
import numpy as np
from torch.autograd import Variable
import torch.nn as nn
import time
from statistics import mean
from torchvision.transforms import transforms as T
from torch.utils.data import DataLoader
from utils.Picture_Dataset import PictureDataset
from utils.BatchRandomSampler import BatchRandomSampler
import matplotlib.pyplot as plt
from torchvision import models
import torch.nn.functional as F
torch.manual_seed(42)
np.random.seed(42)
torch.backends.cudnn.deterministic=True
device=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
softmax=nn.Softmax(dim=1)
fig_dir='./MA_Shape/'
if not os.path.exists(fig_dir):
os.makedirs(fig_dir)
class AlexNet (nn.Module):
def __init__(self):
super (AlexNet,self).__init__()
self.models=models.alexnet(pretrained=True)
self.models=freeze(self.models)
self.models.features[0]=nn.Conv2d(1,64, kernel_size=(7,7),stride=(2,2),padding=(3,3),bias=False)
num_feature=self.models.classifier[1].in_features
classiifer=nn.Sequential(
nn.Linear(in_features=num_feature,out_features=9216,bias=True),
nn.Linear(in_features=9216,out_features=512,bias=True),
nn.Linear(in_features=512,out_features=5,bias=True)
)
self.models.classifier=classiifer
def forward(self,x):
x=self.models(x)
return x
def loss_fn(self,pred_label,target_index_index):
loss=criterion(pred_label,target_index_index)
return loss
def freeze(model,use_feature=True):
if use_feature:
for param in model.parameters():
param.requires_grad=False
return model
class Features(nn.Module):
def __init__(self,model):
super(Features,self).__init__()
self.model=nn.Sequential(
model.models.features,
)
self.model=freeze(self.model)
def forward(self,x):
x=self.model(x)
return x
class Classifier(nn.Module):
def __init__(self,model):
super(Classifier,self).__init__()
self.avgpool=model.models.avgpool
self.fc=model.models.classifier
self.avgpool=freeze(self.avgpool)
self.fc=freeze(self.fc)
def forward(self,x):
x=x.reshape(-1,256,15,15)
x=self.avgpool(x)
x=x.reshape(x.size()[0],-1)
x=self.fc(x)
return x
class LSTM(nn.Module):
def __init__(self,num_features=225):
super(LSTM,self).__init__()
self.in_features=num_features
self.hidden_features=num_features
self.n_layer=1
self.lstm=nn.LSTM(self.in_features,self.hidden_features,self.n_layer)
def init_hidden_layer(self,batch_size):
return torch.zeros(self.n_layer,batch_size,self.hidden_features)
def forward(self,x):
time_step=x.shape[0]
batch_size=x.shape[1]
x=x.view(time_step,batch_size,-1)
hidden_0=Variable(self.init_hidden_layer(batch_size)).to(device)
c_0=Variable(self.init_hidden_layer(batch_size)).to(device)
out,(hidden_0,c_0)=self.lstm(x,(hidden_0,c_0))
out=out[-1,:,:]
out=F.relu(out)
out=out.view(1,-1)
return out
def move_average(dataloader,features,classifier,model):
item_item=int(len(dataloader)/10)
start_time=time.time()
pairs=[]
for t, input_ in enumerate(dataloader):
pant=[]
shirt=[]
sweater=[]
towel=[]
t_shirt=[]
inputs=Variable(input_['Image'][:,0:1,:,:]).to(device)
Labels=input_['Label']
for i in range (len(inputs)-3):
input_frames=inputs[i:i+3]
target_lable=Labels[i+3:i+4]
input_enc=features(input_frames)
pred_enc=model(input_enc)
pred_label=classifier(pred_enc)
possibility=softmax(pred_label)
pant.append(possibility[0][0].item())
shirt.append(possibility[0][1].item())
sweater.append(possibility[0][2].item())
towel.append(possibility[0][3].item())
t_shirt.append(possibility[0][4].item())
if (t+2)%(item_item+1)==0:
print ('['+str(target_lable.item())+']','[Batch: %d/%d][Duration: %f][pant: %f][shirt: %f][sweater: %f][towel: %f][t_shirt: %f]'%(t+1,len(dataloader),time.time()-start_time,mean(pant),mean(shirt),mean(sweater),mean(towel),mean(t_shirt)))
start_time=time.time()
move_pant=[]
move_shirt=[]
move_sweater=[]
move_towel=[]
move_t_shirt=[]
for i in range(len(pant)):
pant_mean=mean(pant[:i+1])
move_pant.append(pant_mean)
shirt_mean=mean(shirt[:i+1])
move_shirt.append(shirt_mean)
sweater_mean=mean(sweater[:i+1])
move_sweater.append(sweater_mean)
towel_mean=mean(towel[:i+1])
move_towel.append(towel_mean)
tshirt_mean=mean(t_shirt[:i+1])
move_t_shirt.append(tshirt_mean)
movavg_pant=mean(move_pant)
movavg_shirt=mean(move_shirt)
movavg_sweater=mean(move_sweater)
movavg_towel=mean(move_towel)
movavg_t_shirt=mean(move_t_shirt)
possibilities=[movavg_pant,movavg_shirt,movavg_sweater,movavg_towel,movavg_t_shirt]
possibilities=torch.FloatTensor(possibilities)
possibilities=possibilities
_,max_index=torch.max(possibilities,0)
pair={'Target':Labels[0],'Prediction':max_index}
pairs.append(pair)
return pairs
def statistics_method(pairs):
test_critia=pairs
zero_to_zero=0
zero_to_one=0
zero_to_two=0
zero_to_three=0
zero_to_four=0
one_to_zero=0
one_to_one=0
one_to_two=0
one_to_three=0
one_to_four=0
two_to_zero=0
two_to_one=0
two_to_two=0
two_to_three=0
two_to_four=0
three_to_zero=0
three_to_one=0
three_to_two=0
three_to_three=0
three_to_four=0
four_to_zero=0
four_to_one=0
four_to_two=0
four_to_three=0
four_to_four=0
for x in range (len(test_critia)):
if test_critia[x]["Target"]==0:
if test_critia[x]["Prediction"]==0:
zero_to_zero+=1
if test_critia[x]["Prediction"]==1:
zero_to_one+=1
if test_critia[x]["Prediction"]==2:
zero_to_two+=1
if test_critia[x]["Prediction"]==3:
zero_to_three+=1
if test_critia[x]["Prediction"]==4:
zero_to_four+=1
if test_critia[x]["Target"]==1:
if test_critia[x]["Prediction"]==0:
one_to_zero+=1
if test_critia[x]["Prediction"]==1:
one_to_one+=1
if test_critia[x]["Prediction"]==2:
one_to_two+=1
if test_critia[x]["Prediction"]==3:
one_to_three+=1
if test_critia[x]["Prediction"]==4:
one_to_four+=1
if test_critia[x]["Target"]==2:
if test_critia[x]["Prediction"]==0:
two_to_zero+=1
if test_critia[x]["Prediction"]==1:
two_to_one+=1
if test_critia[x]["Prediction"]==2:
two_to_two+=1
if test_critia[x]["Prediction"]==3:
two_to_three+=1
if test_critia[x]["Prediction"]==4:
two_to_four+=1
if test_critia[x]["Target"]==3:
if test_critia[x]["Prediction"]==0:
three_to_zero+=1
if test_critia[x]["Prediction"]==1:
three_to_one+=1
if test_critia[x]["Prediction"]==2:
three_to_two+=1
if test_critia[x]["Prediction"]==3:
three_to_three+=1
if test_critia[x]["Prediction"]==4:
three_to_four+=1
if test_critia[x]["Target"]==4:
if test_critia[x]["Prediction"]==0:
four_to_zero+=1
if test_critia[x]["Prediction"]==1:
four_to_one+=1
if test_critia[x]["Prediction"]==2:
four_to_two+=1
if test_critia[x]["Prediction"]==3:
four_to_three+=1
if test_critia[x]["Prediction"]==4:
four_to_four+=1
zero=zero_to_zero+zero_to_one+zero_to_two+zero_to_three+zero_to_four
one=one_to_zero+one_to_one+one_to_two+one_to_three+one_to_four
two=two_to_zero+two_to_one+two_to_two+two_to_three+two_to_four
three=three_to_zero+three_to_one+three_to_two+three_to_three+three_to_four
four=four_to_zero+four_to_one+four_to_two+four_to_three+four_to_four
z_z=zero_to_zero/zero
z_o=zero_to_one/zero
z_tw=zero_to_two/zero
z_th=zero_to_three/zero
z_f=zero_to_four/zero
o_z=one_to_zero/one
o_o=one_to_one/one
o_tw=one_to_two/one
o_th=one_to_three/one
o_f=one_to_four/one
tw_z=two_to_zero/two
tw_o=two_to_one/two
tw_tw=two_to_two/two
tw_th=two_to_three/two
tw_f=two_to_four/two
th_z=three_to_zero/three
th_o=three_to_one/three
th_tw=three_to_two/three
th_th=three_to_three/three
th_f=three_to_four/three
f_z=four_to_zero/four
f_o=four_to_one/four
f_tw=four_to_two/four
f_th=four_to_three/four
f_f=four_to_four/four
z=[z_z*100,z_o*100,z_tw*100,z_th*100,z_f*100]
o=[o_z*100,o_o*100,o_tw*100,z_th*100,z_f*100]
tw=[tw_z*100,tw_o*100,tw_tw*100,tw_th*100,tw_f*100]
th=[th_z*100,th_o*100,th_tw*100,th_th*100,th_f*100]
f=[f_z*100,f_o*100,f_tw*100,f_th*100,f_f*100]
plt.figure()
total=[z,o,tw,th,f]
total=np.array(total,dtype=np.float32).reshape(5,5)
ax=sns.heatmap(total,annot=True,cmap="YlGnBu",vmin=0,vmax=100,fmt=".2f",xticklabels=False,yticklabels=False,cbar_kws={"label":"Classification Accuracy(%)[ResCla] Color Bar"})
plt.title('Move Average Result (%)')
plt.savefig(fig_dir+'MA_Shape.png')
transform=T.Compose([
T.Resize((256,256)),
T.ToTensor()
])
gartment_dataset=PictureDataset(file_path='./Database/Real/depth/',csv_path='./csv_clothes/real/depth/LOOD_25_full.csv',idx_column=4,transforms=transform)
date_len=len(gartment_dataset)
indices=list(range(date_len))
sampler=BatchRandomSampler(indices,200)
dataloader=DataLoader(dataset=gartment_dataset,batch_size=200,sampler=sampler,num_workers=4)
alexnet_Path='./alexnet_model/alexnet_shape_dict.pth'
LSTM_Path='./lstm_model/lstm_shape_dict.pth'
alexnet=AlexNet()
print (alexnet)
alexnet.load_state_dict(torch.load(alexnet_Path))
features=Features(alexnet)
classifier=Classifier(alexnet)
features=features.to(device)
classifier=classifier.to(device)
model=LSTM()
model.load_state_dict(torch.load(LSTM_Path))
model=freeze(model)
model=model.to(device)
pairs=move_average(dataloader,features,classifier,model)
statistics_method(pairs)
print('finished!')