Skip to content

Releases: cudawarped/opencv-python-cuda-wheels

4.11.0.20250124

24 Jan 18:40
255564a
Compare
Choose a tag to compare

OpenCV python wheels built against CUDA 12.8, Nvidia Video Codec SDK 12.2 and cuDNN 9.7.0.

Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-12.0.

Nvidia GPU Computing Toolkit v12.8 is required for import cv2 to work and cuDNN 9.7.0 for accelerated inference when using the dnn module.

Note Windows OS: This wheel relies on cuDNN being installed in the CUDA Toolkit directory. Therefore you can either download

  1. the cuDNN Tarball (Version->Tarball) and extract its contents to your CUDA directory, or

  2. the installer (Version->exe (local)) and the add the path to the bin folder inside the cuDNN installation directory to your PATH_TO_PYTHON_DIST/Lib/site-packages/cv2/config.py file. e.g.

    import os

    BINARIES_PATHS = [
    os.path.join('D:/build/opencv/install', 'x64/vc17/bin'),
    os.path.join(os.getenv('CUDA_PATH', 'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.8'), 'bin')
    os.path.join('C:/Program Files/NVIDIA/CUDNN/v9.7/bin/12.8')
    ] + BINARIES_PATHS

Nvidia CMake configuration output

--   NVIDIA CUDA:                   YES (ver 12.8, CUFFT CUBLAS NVCUVID NVCUVENC)
--     NVIDIA GPU arch:             50 52 60 61 70 75 80 86 89 90 100 120
--     NVIDIA PTX archs:            120
--
--   cuDNN:                         YES (ver 9.7.0)
Build Summary

Windows Build commands

set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0;10.0;12.0 -DCUDA_ARCH_PTX=12.0"
set ENABLE_CONTRIB=1
set ENABLE_ROLLING=1
python.exe setup.py bdist_wheel --py-limited-api=cp37

Ubuntu 22.04 Build commands

export "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0;10.0;12.0 -DCUDA_ARCH_PTX=12.0"
export ENABLE_CONTRIB=1
export ENABLE_ROLLING=1
python setup.py bdist_wheel --py-limited-api=cp37

4.11.0.86

16 Jan 08:34
764c325
Compare
Choose a tag to compare

OpenCV python wheels built against CUDA 12.6, Nvidia Video Codec SDK 12.2 and cuDNN 9.6.0.

Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-9.0.

Nvidia GPU Computing Toolkit v12.6 is required for import cv2 to work and cuDNN 9.6.0 for accelerated inference when using the dnn module.

Note Windows OS: This wheel relies on cuDNN being installed in the CUDA Toolkit directory. Therefore you can either download

  1. the cuDNN Tarball (Version->Tarball) and extract its contents to your CUDA directory, or

  2. the installer (Version->exe (local)) and the add the path to the bin folder inside the cuDNN installation directory to your PATH_TO_PYTHON_DIST/Lib/site-packages/cv2/config.py file. e.g.

    import os

    BINARIES_PATHS = [
    os.path.join('D:/build/opencv/install', 'x64/vc17/bin'),
    os.path.join(os.getenv('CUDA_PATH', 'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6'), 'bin')
    os.path.join('C:/Program Files/NVIDIA/CUDNN/v9.6/bin/12.6')
    ] + BINARIES_PATHS

Build Summary

Windows

Nvidia CMake configuration output

NVIDIA CUDA: YES (ver 12.6, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90
NVIDIA PTX archs: 90

cuDNN: YES (ver 9.6.0)

Build commands

set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
set ENABLE_CONTRIB=1
python.exe setup.py bdist_wheel --py-limited-api=cp37

Ubuntu 22.04

Nvidia CMake configuration output

NVIDIA CUDA: YES (ver 12.6, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 53 60 61 62 70 72 75 80 86 87 89 90
NVIDIA PTX archs: 90

cuDNN: YES (ver 9.6.0)

Build commands

export CMAKE_ARGS="-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;5.3;6.0;6.1;6.2;7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
export ENABLE_CONTRIB=1
python setup.py bdist_wheel --py-limited-api=cp37

4.10.0.84

24 Jun 14:54
cce7c99
Compare
Choose a tag to compare

OpenCV python wheels built against CUDA 12.5, Nvidia Video Codec SDK 12.2 and cuDNN 9.2.0.

Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-9.0.

Nvidia GPU Computing Toolkit v12.5 is required for import cv2 to work and cuDNN 9.2.0 for accelerated inference when using the dnn module.

Note Windows OS: This wheel relies on cuDNN being installed in the CUDA Toolkit directory. Therefore you can either

  1. Download the cuDNN Tarball (not the installer) and extract its contents to your CUDA directory, or

  2. Add the path to the bin folder inside the cuDNN installation directory to your PATH_TO_PYTHON_DIST/Lib/site-packages/cv2/config.py file. e.g.

    import os

    BINARIES_PATHS = [
    os.path.join('D:/build/opencv/install', 'x64/vc17/bin'),
    os.path.join(os.getenv('CUDA_PATH', 'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.5'), 'bin')
    os.path.join('C:/Program Files/NVIDIA/CUDNN/v9.2/bin/12.5')
    ] + BINARIES_PATHS

Build Summary

Windows

Nvidia CMake configuration output

NVIDIA CUDA: YES (ver 12.5, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90
NVIDIA PTX archs: 90

cuDNN: YES (ver 9.2.0)

Build commands

set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
set ENABLE_CONTRIB=1
python.exe setup.py bdist_wheel --py-limited-api=cp37

Ubuntu 22.04

Nvidia CMake configuration output

NVIDIA CUDA: YES (ver 12.5, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 53 60 61 62 70 72 75 80 86 87 89 90
NVIDIA PTX archs: 90

cuDNN: YES (ver 9.2.0)

Build commands

export CMAKE_ARGS="-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;5.3;6.0;6.1;6.2;7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
export ENABLE_CONTRIB=1
python setup.py bdist_wheel --py-limited-api=cp37

4.10.0.82

03 Jun 19:29
5f132ad
Compare
Choose a tag to compare

OpenCV python wheels built against CUDA 12.5, Nvidia Video Codec SDK 12.2 and cuDNN 9.1.1.

Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-9.0.

Nvidia GPU Computing Toolkit v12.5 is required for import cv2 to work and cuDNN 9.1.1 for accelerated inference when using the dnn module.

Note Windows OS: This wheel relies on cuDNN being installed in the CUDA Toolkit directory. Therefore you can either

  1. Download the cuDNN Tarball (not the installer) and extract its contents to your CUDA directory, or

  2. Add the path to the bin folder inside the cuDNN installation directory to your PATH_TO_PYTHON_DIST/Lib/site-packages/cv2/config.py file. e.g.

    import os

    BINARIES_PATHS = [
    os.path.join('D:/build/opencv/install', 'x64/vc17/bin'),
    os.path.join(os.getenv('CUDA_PATH', 'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.5'), 'bin')
    os.path.join('C:/Program Files/NVIDIA/CUDNN/v9.1/bin/12.5')
    ] + BINARIES_PATHS

Build Summary

Windows

Nvidia CMake configuration output

NVIDIA CUDA: YES (ver 12.5, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90
NVIDIA PTX archs: 90

cuDNN: YES (ver 9.1.1)

Build commands

set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
set ENABLE_CONTRIB=1
python.exe setup.py bdist_wheel --py-limited-api=cp37

Ubuntu 22.04

Nvidia CMake configuration output

NVIDIA CUDA: YES (ver 12.5, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 53 60 61 62 70 72 75 80 86 87 89 90
NVIDIA PTX archs: 90

cuDNN: YES (ver 9.1.1)

Build commands

export CMAKE_ARGS="-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;5.3;6.0;6.1;6.2;7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
export ENABLE_CONTRIB=1
python setup.py bdist_wheel --py-limited-api=cp37

4.9.80_13/05/24

27 Apr 19:50
Compare
Choose a tag to compare

Don't use unless testing fix for opencv/opencv_contrib#3727

OpenCV wheel built against CUDA 12.2, Nvidia Video Codec SDK 12.1 and cuDNN 8.9.7.

Suitable for all devices of compute capability 7.5 and 8.6.

4.9.0.80_24/04/24

24 Apr 17:07
Compare
Choose a tag to compare

OpenCV python wheel built against CUDA 12.3, Nvidia Video Codec SDK 12.1 and cuDNN 8.9.7.

Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-9.0.

Nvidia GPU Computing Toolkit v12.3 is required for import cv2 to work and cuDNN 8.9.7 for accelerated inference when using the dnn module.

Build Summary

Windows

Nvidia CMake configuration output

NVIDIA CUDA: YES (ver 12.3, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90
NVIDIA PTX archs: 90

cuDNN: YES (ver 8.9.7)

Build commands

set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
set ENABLE_CONTRIB=1
python.exe setup.py bdist_wheel --py-limited-api=cp37

4.9.0.80

30 Dec 08:28
Compare
Choose a tag to compare

OpenCV python wheels built against CUDA 12.3, Nvidia Video Codec SDK 12.1 and cuDNN 8.9.7.

Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-9.0.

Nvidia GPU Computing Toolkit v12.3 is required for import cv2 to work and cuDNN 8.9.7 for accelerated inference when using the dnn module.

Build Summary

Windows

Nvidia CMake configuration output

NVIDIA CUDA: YES (ver 12.3, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90
NVIDIA PTX archs: 90

cuDNN: YES (ver 8.9.7)

Build commands

set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
set ENABLE_CONTRIB=1
python.exe setup.py bdist_wheel --py-limited-api=cp37

Ubuntu 22.04

Nvidia CMake configuration output

NVIDIA CUDA: YES (ver 12.3, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 53 60 61 62 70 72 75 80 86 87 89 90
NVIDIA PTX archs: 90

cuDNN: YES (ver 8.9.7)

Build commands

export CMAKE_ARGS="-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;5.3;6.0;6.1;6.2;7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
export ENABLE_CONTRIB=1
python setup.py bdist_wheel --py-limited-api=cp37

4.8.0.20231027

27 Oct 15:51
Compare
Choose a tag to compare

OpenCV python wheels built against CUDA 12.3, Nvidia Video Codec SDK 12.1 and cuDNN 8.9.5.

Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-9.0.

Nvidia GPU Computing Toolkit v12.3 is required for import cv2 to work and cuDNN 8.9.5 for accelerated inference when using the dnn module.

Build Summary

Windows

Nvidia CMake configuration output

NVIDIA CUDA: YES (ver 12.3, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90
NVIDIA PTX archs: 90

cuDNN: YES (ver 8.9.5)

Build commands

set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
set ENABLE_CONTRIB=1
set ENABLE_ROLLING=1
python.exe setup.py bdist_wheel --py-limited-api=cp36

Ubuntu 22.04

Nvidia CMake configuration output

NVIDIA CUDA: YES (ver 12.3, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 53 60 61 62 70 72 75 80 86 87 89 90
NVIDIA PTX archs: 90

cuDNN: YES (ver 8.9.5)

Build commands

export CMAKE_ARGS="-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;5.3;6.0;6.1;6.2;7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
export ENABLE_CONTRIB=1
export ENABLE_ROLLING=1
python setup.py bdist_wheel --py-limited-api=cp36

4.8.0.20230804

04 Aug 13:46
43cd716
Compare
Choose a tag to compare

OpenCV python wheels built against CUDA 12.2, Nvidia Video Codec SDK 12.1 and cuDNN 8.9.3.

Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-9.0.

Nvidia GPU Computing Toolkit v12.2 is required for import cv2 to work and cuDNN 8.9.3 for accelerated inference when using the dnn module.

Build Summary

Windows

Nvidia CMake configuration output

NVIDIA CUDA: YES (ver 12.2, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90
NVIDIA PTX archs: 90

cuDNN: YES (ver 8.9.3)

Build commands

set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
set ENABLE_CONTRIB=1
set ENABLE_ROLLING=1
python.exe setup.py bdist_wheel --py-limited-api=cp36

Linux

Nvidia CMake configuration output

NVIDIA CUDA: YES (ver 12.2, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 53 60 61 62 70 72 75 80 86 87 89 90
NVIDIA PTX archs: 90

cuDNN: YES (ver 8.9.3)

Build commands

export CMAKE_ARGS="-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;5.3;6.0;6.1;6.2;7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
export ENABLE_CONTRIB=1
export ENABLE_ROLLING=1
python setup.py bdist_wheel --py-limited-api=cp36

4.8.0.74

02 Jul 15:47
0ec125d
Compare
Choose a tag to compare

OpenCV python wheels built against CUDA 12.1 Nvidia Video Codec SDK 12.1 and cuDNN 8.9.2.

Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-9.0.

Nvidia GPU Computing Toolkit v12.1 is required for import cv2 to work and cuDNN 8.9.2 for accelerated inference when using the dnn module.

Build Summary

Windows

Nvidia CMake configuration output

NVIDIA CUDA: YES (ver 12.1, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90
NVIDIA PTX archs: 90

cuDNN: YES (ver 8.9.2)

Build commands

set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
set ENABLE_CONTRIB=1
python.exe setup.py bdist_wheel --py-limited-api=cp36

Linux

Nvidia CMake configuration output

NVIDIA CUDA: YES (ver 12.1, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 53 60 61 62 70 72 75 80 86 87 89 90
NVIDIA PTX archs: 90

cuDNN: YES (ver 8.9.2)

Build commands

export CMAKE_ARGS="-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;5.3;6.0;6.1;6.2;7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
export ENABLE_CONTRIB=1
python setup.py bdist_wheel --py-limited-api=cp36