Releases: cudawarped/opencv-python-cuda-wheels
4.11.0.20250124
OpenCV python wheels built against CUDA 12.8, Nvidia Video Codec SDK 12.2 and cuDNN 9.7.0.
Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-12.0.
Nvidia GPU Computing Toolkit v12.8 is required for import cv2
to work and cuDNN 9.7.0 for accelerated inference when using the dnn module.
Note Windows OS: This wheel relies on cuDNN being installed in the CUDA Toolkit directory. Therefore you can either download
-
the cuDNN Tarball (Version->Tarball) and extract its contents to your CUDA directory, or
-
the installer (Version->exe (local)) and the add the path to the bin folder inside the cuDNN installation directory to your PATH_TO_PYTHON_DIST/Lib/site-packages/cv2/config.py file. e.g.
import os
BINARIES_PATHS = [
os.path.join('D:/build/opencv/install', 'x64/vc17/bin'),
os.path.join(os.getenv('CUDA_PATH', 'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.8'), 'bin')
os.path.join('C:/Program Files/NVIDIA/CUDNN/v9.7/bin/12.8')
] + BINARIES_PATHS
Nvidia CMake configuration output
-- NVIDIA CUDA: YES (ver 12.8, CUFFT CUBLAS NVCUVID NVCUVENC)
-- NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90 100 120
-- NVIDIA PTX archs: 120
--
-- cuDNN: YES (ver 9.7.0)
Build Summary
Windows Build commands
set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0;10.0;12.0 -DCUDA_ARCH_PTX=12.0"
set ENABLE_CONTRIB=1
set ENABLE_ROLLING=1
python.exe setup.py bdist_wheel --py-limited-api=cp37
Ubuntu 22.04 Build commands
export "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0;10.0;12.0 -DCUDA_ARCH_PTX=12.0"
export ENABLE_CONTRIB=1
export ENABLE_ROLLING=1
python setup.py bdist_wheel --py-limited-api=cp37
4.11.0.86
OpenCV python wheels built against CUDA 12.6, Nvidia Video Codec SDK 12.2 and cuDNN 9.6.0.
Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-9.0.
Nvidia GPU Computing Toolkit v12.6 is required for import cv2
to work and cuDNN 9.6.0 for accelerated inference when using the dnn module.
Note Windows OS: This wheel relies on cuDNN being installed in the CUDA Toolkit directory. Therefore you can either download
-
the cuDNN Tarball (Version->Tarball) and extract its contents to your CUDA directory, or
-
the installer (Version->exe (local)) and the add the path to the bin folder inside the cuDNN installation directory to your PATH_TO_PYTHON_DIST/Lib/site-packages/cv2/config.py file. e.g.
import os
BINARIES_PATHS = [
os.path.join('D:/build/opencv/install', 'x64/vc17/bin'),
os.path.join(os.getenv('CUDA_PATH', 'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6'), 'bin')
os.path.join('C:/Program Files/NVIDIA/CUDNN/v9.6/bin/12.6')
] + BINARIES_PATHS
Build Summary
Windows
Nvidia CMake configuration output
NVIDIA CUDA: YES (ver 12.6, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90
NVIDIA PTX archs: 90cuDNN: YES (ver 9.6.0)
Build commands
set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
set ENABLE_CONTRIB=1
python.exe setup.py bdist_wheel --py-limited-api=cp37
Ubuntu 22.04
Nvidia CMake configuration output
NVIDIA CUDA: YES (ver 12.6, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 53 60 61 62 70 72 75 80 86 87 89 90
NVIDIA PTX archs: 90cuDNN: YES (ver 9.6.0)
Build commands
export CMAKE_ARGS="-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;5.3;6.0;6.1;6.2;7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
export ENABLE_CONTRIB=1
python setup.py bdist_wheel --py-limited-api=cp37
4.10.0.84
OpenCV python wheels built against CUDA 12.5, Nvidia Video Codec SDK 12.2 and cuDNN 9.2.0.
Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-9.0.
Nvidia GPU Computing Toolkit v12.5 is required for import cv2 to work and cuDNN 9.2.0 for accelerated inference when using the dnn module.
Note Windows OS: This wheel relies on cuDNN being installed in the CUDA Toolkit directory. Therefore you can either
-
Download the cuDNN Tarball (not the installer) and extract its contents to your CUDA directory, or
-
Add the path to the bin folder inside the cuDNN installation directory to your PATH_TO_PYTHON_DIST/Lib/site-packages/cv2/config.py file. e.g.
import os
BINARIES_PATHS = [
os.path.join('D:/build/opencv/install', 'x64/vc17/bin'),
os.path.join(os.getenv('CUDA_PATH', 'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.5'), 'bin')
os.path.join('C:/Program Files/NVIDIA/CUDNN/v9.2/bin/12.5')
] + BINARIES_PATHS
Build Summary
Windows
Nvidia CMake configuration output
NVIDIA CUDA: YES (ver 12.5, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90
NVIDIA PTX archs: 90cuDNN: YES (ver 9.2.0)
Build commands
set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
set ENABLE_CONTRIB=1
python.exe setup.py bdist_wheel --py-limited-api=cp37
Ubuntu 22.04
Nvidia CMake configuration output
NVIDIA CUDA: YES (ver 12.5, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 53 60 61 62 70 72 75 80 86 87 89 90
NVIDIA PTX archs: 90cuDNN: YES (ver 9.2.0)
Build commands
export CMAKE_ARGS="-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;5.3;6.0;6.1;6.2;7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
export ENABLE_CONTRIB=1
python setup.py bdist_wheel --py-limited-api=cp37
4.10.0.82
OpenCV python wheels built against CUDA 12.5, Nvidia Video Codec SDK 12.2 and cuDNN 9.1.1.
Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-9.0.
Nvidia GPU Computing Toolkit v12.5 is required for import cv2 to work and cuDNN 9.1.1 for accelerated inference when using the dnn module.
Note Windows OS: This wheel relies on cuDNN being installed in the CUDA Toolkit directory. Therefore you can either
-
Download the cuDNN Tarball (not the installer) and extract its contents to your CUDA directory, or
-
Add the path to the bin folder inside the cuDNN installation directory to your PATH_TO_PYTHON_DIST/Lib/site-packages/cv2/config.py file. e.g.
import os
BINARIES_PATHS = [
os.path.join('D:/build/opencv/install', 'x64/vc17/bin'),
os.path.join(os.getenv('CUDA_PATH', 'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.5'), 'bin')
os.path.join('C:/Program Files/NVIDIA/CUDNN/v9.1/bin/12.5')
] + BINARIES_PATHS
Build Summary
Windows
Nvidia CMake configuration output
NVIDIA CUDA: YES (ver 12.5, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90
NVIDIA PTX archs: 90cuDNN: YES (ver 9.1.1)
Build commands
set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
set ENABLE_CONTRIB=1
python.exe setup.py bdist_wheel --py-limited-api=cp37
Ubuntu 22.04
Nvidia CMake configuration output
NVIDIA CUDA: YES (ver 12.5, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 53 60 61 62 70 72 75 80 86 87 89 90
NVIDIA PTX archs: 90cuDNN: YES (ver 9.1.1)
Build commands
export CMAKE_ARGS="-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;5.3;6.0;6.1;6.2;7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
export ENABLE_CONTRIB=1
python setup.py bdist_wheel --py-limited-api=cp37
4.9.80_13/05/24
Don't use unless testing fix for opencv/opencv_contrib#3727
OpenCV wheel built against CUDA 12.2, Nvidia Video Codec SDK 12.1 and cuDNN 8.9.7.
Suitable for all devices of compute capability 7.5 and 8.6.
4.9.0.80_24/04/24
OpenCV python wheel built against CUDA 12.3, Nvidia Video Codec SDK 12.1 and cuDNN 8.9.7.
Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-9.0.
Nvidia GPU Computing Toolkit v12.3 is required for import cv2 to work and cuDNN 8.9.7 for accelerated inference when using the dnn module.
Build Summary
Windows
Nvidia CMake configuration output
NVIDIA CUDA: YES (ver 12.3, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90
NVIDIA PTX archs: 90cuDNN: YES (ver 8.9.7)
Build commands
set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
set ENABLE_CONTRIB=1
python.exe setup.py bdist_wheel --py-limited-api=cp37
4.9.0.80
OpenCV python wheels built against CUDA 12.3, Nvidia Video Codec SDK 12.1 and cuDNN 8.9.7.
Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-9.0.
Nvidia GPU Computing Toolkit v12.3 is required for import cv2 to work and cuDNN 8.9.7 for accelerated inference when using the dnn module.
Build Summary
Windows
Nvidia CMake configuration output
NVIDIA CUDA: YES (ver 12.3, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90
NVIDIA PTX archs: 90cuDNN: YES (ver 8.9.7)
Build commands
set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
set ENABLE_CONTRIB=1
python.exe setup.py bdist_wheel --py-limited-api=cp37
Ubuntu 22.04
Nvidia CMake configuration output
NVIDIA CUDA: YES (ver 12.3, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 53 60 61 62 70 72 75 80 86 87 89 90
NVIDIA PTX archs: 90cuDNN: YES (ver 8.9.7)
Build commands
export CMAKE_ARGS="-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;5.3;6.0;6.1;6.2;7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
export ENABLE_CONTRIB=1
python setup.py bdist_wheel --py-limited-api=cp37
4.8.0.20231027
OpenCV python wheels built against CUDA 12.3, Nvidia Video Codec SDK 12.1 and cuDNN 8.9.5.
Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-9.0.
Nvidia GPU Computing Toolkit v12.3 is required for import cv2 to work and cuDNN 8.9.5 for accelerated inference when using the dnn module.
Build Summary
Windows
Nvidia CMake configuration output
NVIDIA CUDA: YES (ver 12.3, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90
NVIDIA PTX archs: 90cuDNN: YES (ver 8.9.5)
Build commands
set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
set ENABLE_CONTRIB=1
set ENABLE_ROLLING=1
python.exe setup.py bdist_wheel --py-limited-api=cp36
Ubuntu 22.04
Nvidia CMake configuration output
NVIDIA CUDA: YES (ver 12.3, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 53 60 61 62 70 72 75 80 86 87 89 90
NVIDIA PTX archs: 90cuDNN: YES (ver 8.9.5)
Build commands
export CMAKE_ARGS="-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;5.3;6.0;6.1;6.2;7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
export ENABLE_CONTRIB=1
export ENABLE_ROLLING=1
python setup.py bdist_wheel --py-limited-api=cp36
4.8.0.20230804
OpenCV python wheels built against CUDA 12.2, Nvidia Video Codec SDK 12.1 and cuDNN 8.9.3.
Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-9.0.
Nvidia GPU Computing Toolkit v12.2 is required for import cv2 to work and cuDNN 8.9.3 for accelerated inference when using the dnn module.
Build Summary
Windows
Nvidia CMake configuration output
NVIDIA CUDA: YES (ver 12.2, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90
NVIDIA PTX archs: 90cuDNN: YES (ver 8.9.3)
Build commands
set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
set ENABLE_CONTRIB=1
set ENABLE_ROLLING=1
python.exe setup.py bdist_wheel --py-limited-api=cp36
Linux
Nvidia CMake configuration output
NVIDIA CUDA: YES (ver 12.2, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 53 60 61 62 70 72 75 80 86 87 89 90
NVIDIA PTX archs: 90cuDNN: YES (ver 8.9.3)
Build commands
export CMAKE_ARGS="-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;5.3;6.0;6.1;6.2;7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
export ENABLE_CONTRIB=1
export ENABLE_ROLLING=1
python setup.py bdist_wheel --py-limited-api=cp36
4.8.0.74
OpenCV python wheels built against CUDA 12.1 Nvidia Video Codec SDK 12.1 and cuDNN 8.9.2.
Suitable for all devices of compute capability >= 5.0 with binary compatible code for devices of compute capability 5.0-9.0.
Nvidia GPU Computing Toolkit v12.1 is required for import cv2 to work and cuDNN 8.9.2 for accelerated inference when using the dnn module.
Build Summary
Windows
Nvidia CMake configuration output
NVIDIA CUDA: YES (ver 12.1, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 60 61 70 75 80 86 89 90
NVIDIA PTX archs: 90cuDNN: YES (ver 8.9.2)
Build commands
set "CMAKE_ARGS=-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
set ENABLE_CONTRIB=1
python.exe setup.py bdist_wheel --py-limited-api=cp36
Linux
Nvidia CMake configuration output
NVIDIA CUDA: YES (ver 12.1, CUFFT CUBLAS NVCUVID NVCUVENC)
NVIDIA GPU arch: 50 52 53 60 61 62 70 72 75 80 86 87 89 90
NVIDIA PTX archs: 90cuDNN: YES (ver 8.9.2)
Build commands
export CMAKE_ARGS="-DWITH_CUDA=ON -DCUDA_ARCH_BIN=5.0;5.2;5.3;6.0;6.1;6.2;7.0;7.2;7.5;8.0;8.6;8.7;8.9;9.0 -DCUDA_ARCH_PTX=9.0"
export ENABLE_CONTRIB=1
python setup.py bdist_wheel --py-limited-api=cp36