-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 8a68d4c
Showing
2 changed files
with
161 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
from __future__ import absolute_import, division, print_function | ||
|
||
import tensorflow as tf | ||
|
||
# import matplotlib.pyplot as plt | ||
import numpy as np | ||
import scipy.io as sio | ||
from sklearn.utils import shuffle | ||
from sklearn.model_selection import train_test_split | ||
|
||
def read_dataset(): | ||
|
||
D = sio.loadmat('Brain_Integ.mat') | ||
# Extract the fearues and labels | ||
X = D['Integ_X'].astype('float32') # 560*399 | ||
T = np.asarray([t[0] for t in D['Survival']]).astype('float32') # 560*1 | ||
C = np.asarray([c[0] for c in D['Censored']]).astype('int32') # O # 560*1 | ||
# TC = np.asarray([T for c in C if c==1]) | ||
# Consider only the dead patient's data | ||
TC = T[C==1] | ||
XC = X[C==1] | ||
Y = np.asarray(TC) | ||
X = np.asarray(XC) | ||
|
||
print ('Shape of X : ', X.shape) | ||
print ('Shape of Y : ', Y.shape) | ||
return (X, Y) | ||
|
||
X, Y = read_dataset() | ||
X, Y = shuffle(X, Y, random_state=1) | ||
|
||
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.20, random_state=420) | ||
|
||
|
||
total_len = X_train.shape[0] # Total Samples | ||
|
||
# ***** Parameters ***** | ||
learning_rate = 0.01 # Learning rate for parameter updates | ||
training_epochs = 1000 # EPOCHS | ||
batch_size = 100 # Set to 1 for whole samples at once ## THIS CAUSES ERROR IN label = batch_y | ||
display_step = 100 # Set to 1 for displaying all epochs | ||
# dropout_rate = 0.9 | ||
|
||
# ***** Network Parameters ***** | ||
n_hidden_1 = 500 # 1st layer number of neurons | ||
n_hidden_2 = 500 # 2nd layer number of neurons | ||
n_hidden_3 = 500 # 3rd layer number of neurons | ||
n_hidden_4 = 500 # 4th layer number of neurons | ||
n_input = X_train.shape[1] # number of columns(features) | ||
n_classes = 1 # Only one output column, represents the predicted value | ||
|
||
# tf Graph input | ||
x = tf.placeholder("float", [None, None]) # Set to [, None] to definite value | ||
y = tf.placeholder("float", [None]) # Set to a definite value | ||
|
||
# layers' weights & biases initialization | ||
variance = 0.1 # VARIANCE selection highly affects ## If set to 10, results in NaN values for predication and cost | ||
weights = { | ||
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1], 0, variance)), | ||
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], 0, variance)), | ||
'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3], 0, variance)), | ||
'h4': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4], 0, variance)), | ||
'out': tf.Variable(tf.random_normal([n_hidden_4, n_classes], 0, variance)) | ||
} | ||
biases = { | ||
'b1': tf.Variable(tf.random_normal([n_hidden_1], 0, variance)), | ||
'b2': tf.Variable(tf.random_normal([n_hidden_2], 0, variance)), | ||
'b3': tf.Variable(tf.random_normal([n_hidden_3], 0, variance)), | ||
'b4': tf.Variable(tf.random_normal([n_hidden_4], 0, variance)), | ||
'out': tf.Variable(tf.random_normal([n_classes], 0, variance)) | ||
} | ||
|
||
# print (weights['h1']) | ||
# print (biases['b1']) | ||
# Model Creation | ||
def multilayer_perceptron(x, weights, biases): | ||
# Hidden layers with RELU activation | ||
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1']) | ||
layer_1 = tf.nn.relu(layer_1) | ||
|
||
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2']) | ||
layer_2 = tf.nn.relu(layer_2) | ||
|
||
layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3']) | ||
layer_3 = tf.nn.relu(layer_3) | ||
|
||
layer_4 = tf.add(tf.matmul(layer_3, weights['h4']), biases['b4']) | ||
layer_4 = tf.nn.relu(layer_4) | ||
|
||
out_layer = tf.matmul(layer_4, weights['out']) + biases['out'] | ||
return out_layer | ||
|
||
|
||
# Construct the grpah for forward pass | ||
pred = multilayer_perceptron(x, weights, biases) | ||
|
||
# Defining loss and optimizer | ||
### reduce_sum ### | ||
# cost = (tf.reduce_mean(tf.square(tf.transpose(pred)-y)) + 0.01*tf.nn.l2_loss(weights)) # USE tf.transpose ====> those 2 arrays are row and column, results in unexpected format, if let as early | ||
cost = tf.reduce_mean(tf.square(tf.transpose(pred)-y)) | ||
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Change to tf.GradientDescentOptimizer() and see | ||
|
||
|
||
|
||
|
||
# Launch the graph | ||
with tf.Session() as sess: | ||
|
||
# Select either Initializers | ||
sess.run(tf.initialize_all_variables()) | ||
# tf.global_variables_initializer() | ||
# ============================= Each EPOCH graph Session============================================================== | ||
|
||
for epoch in range(training_epochs): | ||
avg_cost = 0.0 | ||
total_batch = int(total_len/batch_size) | ||
# Loop over all batches | ||
for i in range(total_batch-1): | ||
batch_x = X_train[i*batch_size:(i+1)*batch_size] | ||
batch_y = Y_train[i*batch_size:(i+1)*batch_size] | ||
print ("batch number :", i) | ||
# Run optimization op (backprop) and cost op (to get loss value) | ||
_, c, p = sess.run([optimizer, cost, pred], feed_dict={x: batch_x, y: batch_y}) | ||
# Compute average loss | ||
avg_cost += c / total_batch | ||
|
||
|
||
# sample prediction | ||
label_value = batch_y | ||
estimate = p # Predicted value | ||
err = label_value-estimate | ||
# print ("num batch:", total_batch) | ||
|
||
# Display logs per epoch step | ||
if epoch % display_step == 0: | ||
print ("Epoch:", '%4d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)) | ||
print ("[*]----------------------------") | ||
for i in xrange(3): # Comparing the predicted values with Labeled values in display | ||
print ("label value:", label_value[i], "estimated value:", estimate[i]) | ||
print ("[*]============================") | ||
|
||
# ==================================================================================================================== | ||
print ("Optimization Finished!") | ||
|
||
# # Test model | ||
# correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) | ||
# # Calculate accuracy | ||
# accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) | ||
# print ("Accuracy:", accuracy.eval({x: X_test, y: Y_test})) | ||
|
||
print ("TESTING STARTS") | ||
|
||
accuracy = sess.run(cost, feed_dict={x:X_test, y: Y_test}) | ||
predicted_vals = sess.run(pred, feed_dict={x: X_test}) | ||
# print ("Accuracy:", accuracy, "Predicted VALUE : ", predicted_vals) | ||
print ("Labeled value : ", Y_test, " <<<>>> Predicted VALUE : ", predicted_vals) | ||
|
||
print ("TESTING ENDS") | ||
|
||
|
||
|