Skip to content

Commit

Permalink
Merge pull request #42 from proux01/norm
Browse files Browse the repository at this point in the history
Use normalized operations in binrat
  • Loading branch information
proux01 authored Aug 2, 2021
2 parents 467b78c + eba0329 commit 469a38f
Show file tree
Hide file tree
Showing 2 changed files with 108 additions and 12 deletions.
1 change: 0 additions & 1 deletion .github/workflows/docker-action.yml
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@ jobs:
strategy:
matrix:
image:
- 'mathcomp/mathcomp:1.12.0-coq-dev'
- 'mathcomp/mathcomp:1.12.0-coq-8.13'
- 'mathcomp/mathcomp:1.12.0-coq-8.12'
- 'mathcomp/mathcomp:1.12.0-coq-8.11'
Expand Down
119 changes: 108 additions & 11 deletions refinements/binrat.v
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
Require Import ZArith QArith Lia.
From Bignums Require Import BigQ.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat order.
From mathcomp Require Import ssralg ssrnum ssrint rat div.
From mathcomp Require Import ssralg ssrnum ssrint rat div intdiv.
From CoqEAL.refinements Require Import hrel refinements param binint.
Import Refinements.Op.

Expand Down Expand Up @@ -115,6 +115,9 @@ Qed.
Lemma Z2int_opp n : Z2int (- n) = (- (Z2int n))%R.
Proof. by case n=>// p /=; rewrite GRing.opprK. Qed.

Lemma Z2int_abs x : Z2int (Z.abs x) = `|Z2int x|%nat.
Proof. by case: x => // p /=; rewrite abszN. Qed.

Lemma Z2int_add x y : Z2int (x + y) = (Z2int x + Z2int y)%R.
Proof.
rewrite /Z2int /GRing.add /= /intZmod.addz /Z.add; case x, y=>//.
Expand Down Expand Up @@ -193,6 +196,35 @@ move=> p.
by rewrite GRing.mulrN Z2int_mul_nat_of_pos -Z2int_opp Zopp_mult_distr_r.
Qed.

Lemma divE x y : Nat.div x y = divn x y.
Proof.
case: y => [//|y].
rewrite /Nat.div.
move: (Nat.divmod_spec x y 0 y).
case: Nat.divmod => q r /(_ (le_n _)) [].
rewrite Nat.mul_0_r Nat.sub_diag !Nat.add_0_r Nat.mul_comm => + Hr /=.
rewrite multE minusE plusE => /(f_equal (fun x => divn x y.+1)) ->.
rewrite divnMDl // divn_small ?addn0 //.
rewrite ltn_subLR; [|exact/ssrnat.leP].
by rewrite -addSnnS addnC addnS ltnS leq_addr.
Qed.

(* Mathcomp's divz and Z.div don't match for negative values. *)
Lemma Z2int_div x y : Z.le 0 x -> Z.le 0 y ->
Z2int (Z.div x y) = (Z2int x %/ Z2int y)%Z.
Proof.
case: x => [|x|//] _; [by rewrite intdiv.div0z|].
case: y => [|y|//] _; [by rewrite intdiv.divz0|].
rewrite -!positive_nat_Z -div_Zdiv; last first.
{ rewrite Nat.neq_0_lt_0; exact: Pos2Nat.is_pos. }
rewrite !positive_nat_Z /= /divz gtr0_sgz ?mul1r; last first.
{ exact: nat_of_pos_gt0. }
rewrite divE !binnat.to_natE absz_nat /Z2int.
move: (Zle_0_nat (nat_of_pos x %/ nat_of_pos y)).
rewrite -[X in _ = Posz X]Nat2Z.id.
by case: Z.of_nat => //= p _; rewrite binnat.to_natE.
Qed.

Lemma Z2int_le x y : (Z2int x <= Z2int y)%R <-> Z.le x y.
Proof.
rewrite /Z2int; case Ex: x; case Ey: y=> //.
Expand Down Expand Up @@ -299,6 +331,22 @@ suff ->: a' = (a / g)%Z.
by rewrite Ha Z.mul_comm Z_div_mult_full.
Qed.

Lemma Z2int_lcm x y : Z.le 0 x -> Z.le 0 y ->
Z2int (Z.lcm x y) = lcmn `|Z2int x| `|Z2int y|.
Proof.
case: x => [|x|//] _; [by rewrite /= lcm0n|].
case: y => [|y|//] _; [by rewrite /= lcmn0|].
rewrite /Z.lcm Z2int_abs Z2int_mul Z2int_div //.
rewrite ZgcdE' abszM; apply: f_equal; apply/eqP.
rewrite -(@eqn_pmul2r (gcdn `|Z2int (Z.pos x)| `|Z2int (Z.pos y)|)); last first.
{ rewrite gcdn_gt0; apply/orP; left; rewrite absz_gt0 /= eqz_nat.
apply: lt0n_neq0; exact: nat_of_pos_gt0. }
rewrite muln_lcm_gcd.
rewrite -(absz_nat (gcdn _ _)) -mulnA -abszM.
rewrite Z2int_Z_of_nat /=.
by rewrite intdiv.divzK // /mem /in_mem /intdiv.dvdz /= dvdn_gcdr.
Qed.

End Zint.

(** ** Link between [bigQ] (Coq standard lib) and [rat] (Mathcomp) *)
Expand All @@ -325,11 +373,11 @@ Definition r_ratBigQ := fun_hrel bigQ2rat.
Global Instance zero_bigQ : zero_of bigQ := 0%bigQ.
Global Instance one_bigQ : one_of bigQ := 1%bigQ.
Global Instance opp_bigQ : opp_of bigQ := BigQ.opp.
Global Instance add_bigQ : add_of bigQ := BigQ.add.
Global Instance sub_bigQ : sub_of bigQ := BigQ.sub.
Global Instance mul_bigQ : mul_of bigQ := BigQ.mul.
Global Instance inv_bigQ : inv_of bigQ := BigQ.inv.
Global Instance div_bigQ : div_of bigQ := BigQ.div.
Global Instance add_bigQ : add_of bigQ := BigQ.add_norm.
Global Instance sub_bigQ : sub_of bigQ := BigQ.sub_norm.
Global Instance mul_bigQ : mul_of bigQ := BigQ.mul_norm.
Global Instance inv_bigQ : inv_of bigQ := BigQ.inv_norm.
Global Instance div_bigQ : div_of bigQ := BigQ.div_norm.
Global Instance eq_bigQ : eq_of bigQ := BigQ.eq_bool.
Global Instance lt_bigQ : lt_of bigQ := fun p q => if BigQ.compare p q is Lt then true else false.
Global Instance le_bigQ : leq_of bigQ := fun p q => if BigQ.compare q p is Lt then false else true.
Expand Down Expand Up @@ -382,11 +430,57 @@ case: g => [|g|g].
by move: (Z.gcd_nonneg n (Z.pos d)) => + _ => /[swap] <-.
Qed.

Lemma BigQ_red_den_nonzero q :
match BigQ.red q with BigQ.Qz _ => True | BigQ.Qq _ d => [d]%bigN <> Z0 end.
Proof.
case: q => [//|n d] /=.
rewrite /BigQ.norm.
rewrite BigN.spec_compare.
case: Z.compare_spec => [| |//] Hgcd.
{ rewrite /BigQ.check_int BigN.spec_compare.
case Z.compare_spec => [//| |//] Hd.
apply: BigNumPrelude.Zlt0_not_eq.
move: Hd; exact: Z.lt_trans. }
rewrite /BigQ.check_int BigN.spec_compare.
case Z.compare_spec => [//| |//] Hd.
apply: BigNumPrelude.Zlt0_not_eq.
move: Hd; exact: Z.lt_trans.
Qed.

Lemma r_ratBigQ_red x y : r_ratBigQ x y ->
match BigQ.red y with
| BigQ.Qz n => numq x = Z2int [n]%bigZ /\ denq x = 1%R
| BigQ.Qq n d => numq x = Z2int [n]%bigZ /\ denq x = Z2int [d]%bigN
end.
Proof.
case: (ratP x) => nx dx nx_dx_coprime {x}.
rewrite /r_ratBigQ /fun_hrel /bigQ2rat -BigQ.strong_spec_red.
have ry_red : Qred [BigQ.red y]%bigQ = [BigQ.red y]%bigQ.
{ by rewrite BigQ.strong_spec_red Qcanon.Qred_involutive. }
have ry_dneq0 := BigQ_red_den_nonzero y.
case: (BigQ.red y) ry_dneq0 ry_red => [ny _ _|ny dy dy_neq0].
{ rewrite /BigQ.to_Q /Qnum /Qden mulr1.
move=> /(f_equal ( *%R^~ dx.+1%:~R)%R).
rewrite mulfVK ?mulrz_neq0 // -intrM => /intr_inj nx_eq.
have dx_1 : (dx.+1 = 1)%nat.
{ by move: nx_dx_coprime => /eqP <-; rewrite -nx_eq abszM /= gcdnC gcdnMl. }
by rewrite -nx_eq dx_1 mulr1. }
rewrite /BigQ.to_Q ifF ?BigN.spec_eqb ?Z.eqb_neq //.
rewrite Qcanon.Qred_iff ZgcdE -[1%Z]/(Z.of_nat 1%nat) => /Nat2Z.inj.
rewrite /Qnum /Qden nat_of_pos_Z_to_pos => /eqP ny_dy_coprime.
move=> /eqP; rewrite rat_eqE !coprimeq_num // !coprimeq_den //=.
rewrite !gtr0_sg ?nat_of_pos_gtr0 // !mul1r => /andP[/eqP <-].
rewrite ifF; [|exact/eqP/eqP/lt0r_neq0/nat_of_pos_gtr0].
rewrite -!abszE !absz_nat => /eqP[<-]; split=> [//|].
rewrite -[LHS]/(Z2int (Z.pos (Z.to_pos [dy]%bigN))) Z2Pos.id //.
exact: BigQ.N_to_Z_pos.
Qed.

Global Instance refine_ratBigQ_add :
refines (r_ratBigQ ==> r_ratBigQ ==> r_ratBigQ) +%R +%C.
Proof.
rewrite refinesE => _ a <- _ b <-; rewrite /r_ratBigQ /bigQ2rat /fun_hrel /=.
rewrite (Qred_complete _ _ (BigQ.spec_add _ _)).
rewrite (Qred_complete _ _ (BigQ.spec_add_norm _ _)).
case: (BigQ.to_Q a) => na da {a}.
case: (BigQ.to_Q b) => nb db {b}.
rewrite /Qplus !Z2int_Qred.
Expand All @@ -399,14 +493,14 @@ Global Instance refine_ratBigQ_sub :
refines (r_ratBigQ ==> r_ratBigQ ==> r_ratBigQ) (fun x y => x - y)%R sub_op.
Proof.
apply refines_abstr2=> a b rab c d rcd.
rewrite /sub_op /sub_bigQ /BigQ.sub; eapply refines_apply; tc.
rewrite /sub_op /sub_bigQ /BigQ.sub_norm; eapply refines_apply; tc.
Qed.

Global Instance refine_ratBigQ_mul :
refines (r_ratBigQ ==> r_ratBigQ ==> r_ratBigQ) *%R *%C.
Proof.
rewrite refinesE => _ a <- _ b <-; rewrite /r_ratBigQ /bigQ2rat /fun_hrel /=.
rewrite (Qred_complete _ _ (BigQ.spec_mul _ _)).
rewrite (Qred_complete _ _ (BigQ.spec_mul_norm _ _)).
case: (BigQ.to_Q a) => na da {a}.
case: (BigQ.to_Q b) => nb db {b}.
rewrite /Qmult !Z2int_Qred /=.
Expand All @@ -419,7 +513,7 @@ Global Instance refine_ratBigQ_inv :
refines (r_ratBigQ ==> r_ratBigQ)%rel GRing.inv inv_op.
Proof.
rewrite refinesE => _ a <-; rewrite /r_ratBigQ /bigQ2rat /fun_hrel /=.
rewrite (Qred_complete _ _ (BigQ.spec_inv _)).
rewrite (Qred_complete _ _ (BigQ.spec_inv_norm _)).
case: (BigQ.to_Q a) => na da {a}.
rewrite /Qinv [Qnum (na # da)]/=.
case: na => [|na|na].
Expand All @@ -433,7 +527,7 @@ Global Instance refine_ratBigQ_div :
refines (r_ratBigQ ==> r_ratBigQ ==> r_ratBigQ)%rel (fun x y => x / y)%R div_op.
Proof.
apply: refines_abstr2 => x1 x2 rx y1 y2 ry.
rewrite /div_op /div_bigQ /BigQ.div.
rewrite /div_op /div_bigQ /BigQ.div_norm.
exact: refines_apply.
Qed.

Expand Down Expand Up @@ -530,4 +624,7 @@ Global Instance refine_ratBigQ_spec :
refines (eq ==> r_ratBigQ)%rel spec spec_id.
Proof. by rewrite refinesE => x _ <-. Qed.

Global Instance refine_ratBigQ_bigQ2rat a : refines r_ratBigQ (bigQ2rat a) a.
Proof. by rewrite refinesE. Qed.

End binrat_theory.

0 comments on commit 469a38f

Please sign in to comment.