Data processing scripts related to the Seedlot Selection Tool
- Download elevation data for the area of interest (example source)
- If necessary, combine individual datasets into a single raster
- Clip the raster dataset as needed
- Run the
geotiff2climatena.py
script to convert the clipped DEM to the ClimateNA format, with the region boundary or a continent boundaries shapefile that can be used to mask out oceans
$ python geotiff2climatena.py path/to/clipped_dem.tif path/to/climatena_dem.csv --boundary=path/to/boundary.shp
- Run the ClimateNA tool, using the DEM CSV file as input to generate the desired outputs. For SST, we use:
- Normal 1961-1990 / Annual variables
- More Normal Data / 1981_2010 / Annual Variables
- Future Periods / 15GCM-Ensemble_rcp45_2025 / Annual Variables
- Future Periods / 15GCM-Ensemble_rcp45_2055 / Annual Variables
- Future Periods / 15GCM-Ensemble_rcp45_2085 / Annual Variables
- Future Periods / 15GCM-Ensemble_rcp85_2025 / Annual Variables
- Future Periods / 15GCM-Ensemble_rcp85_2055 / Annual Variables
- Future Periods / 15GCM-Ensemble_rcp85_2085 / Annual Variables
- Run the
climatena2netcdf.py
script to convert each of your ClimateNA outputs to NetCDF
$ python climatena2netcdf.py path/to/clipped_dem.tif path/to/climatena_output.csv path/to/netcdf/dir
- If needed, run the
cut_to_region.py
script to clip the NetCDF datasets from the previous step to smaller regions. Since you will have one NetCDF per variable, use{variable}
to note where in the filename the variable is; the script will clip each NetCDF matching the file pattern.
$ python cut_to_region.py path/to/full_netcdf_{variable}.nc path/to/clipped_netcdf_{variable}.nc