Skip to content

Cluster-aware Diversity Sample Mining for Unsupervised Person Re-Identification

Notifications You must be signed in to change notification settings

colinzhaoxp/CDSM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cluster-aware Diversity Samples Mining for Unsupervised Person Re-Identification

This repository is the official implementation of our paper "Cluster-aware Diversity Samples Mining for Unsupervised Person Re-Identification".

framework_CDSM

Requirements


git clone https://github.com/colinzhaoxp/CDSM.git
cd CDSM
pip install -r requirements.txt
python setup.py develop

Prepare Datasets


Download the datasets Market-1501,MSMT17,DukeMTMC-reID from this link and unzip them under the directory like:

CDSM/examples/data
├── market1501
│   └── Market-1501-v15.09.15
├── dukemtmcreid
│   └── DukeMTMC-reID
└── msmt17
    └── MSMT17_V1

Training


Examples:

Market-1501:

python examples/train.py -b 128 -a resnet50 -d market1501 --k1 25 --iters 400 --eps 0.45 --momentum 0.05 --num-instances 8 --mem-instances 4 --hard-weight 0.5 --pooling-type gem --memorybank CMhybird_v5 --epochs 50 --logs-dir examples/logs/market1501/resnet50_gem_cmhybird

DukeMTMC-reID:

python examples/train.py -b 256 -a resnet50 -d dukemtmcreid --k1 30 --iters 400 --eps 0.6 --momentum 0.05 --num-instances 8 --mem-instances 4 --hard-weight 0.5 --pooling-type gem --memorybank CMhybird_v5 --epochs 50 --logs-dir examples/logs/dukemtmcreid/resnet50_gem_cmhybird

MSMT17:

python examples/train.py -b 256 -a resnet50 -d msmt17 --k1 30 --iters 400 --eps 0.6 --momentum 0.05 --num-instances 8 --mem-instances 4 --hard-weight 0.5 --pooling-type gem --memorybank CMhybird_v5 --epochs 50 --logs-dir examples/logs/msmt17/resnet50_gem_cmhybird
  • use -a resnet50 (default) for the backbone of ResNet-50;
  • use --pooling-type gem for Generalized Mean Pooling (GEM) pooling and --smooth for label smoothing.

Evaluation


To evaluate my model on ImageNet, run:

python examples/test.py -d $DATASET --resume $PATH --pooling-type gem

Results


Our model achieves the following performance on :

Dataset Market1501 DukeMTMC-reID MSMT17
Setting mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10
Fully Unsupervised 85.6 93.9 97.8 98.5 73.7 85.1 92.4 94.7 31.0 61.1 71.3 76.2

Citation


If you find this code useful for your research, please cite our paper

@inproceedings{zhao2022cdsm,  
    title={Cluster-aware Diversity Samples Mining for Unsupervised Person Re-Identification},
    author={Zhao, Xinpeng and Dou, Xiao and Zhang, Xiaowei},  
    booktitle={2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)},
    year={2022},
    pages={1707-1712},  
    doi={10.1109/SMC53654.2022.9945479}
}

Acknowledgements


This project is not possible without multiple great opensourced codebases. We list them below.

About

Cluster-aware Diversity Sample Mining for Unsupervised Person Re-Identification

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages