Go bindings for the HuggingFace Tokenizers library.
make build
to build libtokenizers.a
that you need to run your application that uses bindings. In addition, you need to inform the linker where to find that static library: go run -ldflags="-extldflags '-L./path/to/libtokenizers.a'" .
or just add it to the CGO_LDFLAGS
environment variable: CGO_LDFLAGS="-L./path/to/libtokenizers.a"
to avoid specifying it every time.
If you don't want to install Rust toolchain, build it in docker: docker build --platform=linux/amd64 -f release/Dockerfile .
or use prebuilt binaries from the releases page. Prebuilt libraries are available for:
TLDR: working example.
Load a tokenizer from a JSON config:
import "github.com/cohere-ai/tokenizers"
tk, err := tokenizers.FromFile("./data/bert-base-uncased.json")
if err != nil {
return err
}
// release native resources
defer tk.Close()
Encode text and decode tokens:
fmt.Println("Vocab size:", tk.VocabSize())
// Vocab size: 30522
fmt.Println(tk.Encode("brown fox jumps over the lazy dog", false))
// [2829 4419 14523 2058 1996 13971 3899] [brown fox jumps over the lazy dog]
fmt.Println(tk.Encode("brown fox jumps over the lazy dog", true))
// [101 2829 4419 14523 2058 1996 13971 3899 102] [[CLS] brown fox jumps over the lazy dog [SEP]]
fmt.Println(tk.Decode([]uint32{2829, 4419, 14523, 2058, 1996, 13971, 3899}, true))
// brown fox jumps over the lazy dog
go test . -run=^\$ -bench=. -benchmem -count=10 > test/benchmark/$(git rev-parse HEAD).txt
Decoding overhead (due to CGO and extra allocations) is between 2% to 9% depending on the benchmark.
go test . -bench=. -benchmem -benchtime=10s
goos: darwin
goarch: arm64
pkg: github.com/cohere-ai/tokenizers
BenchmarkEncodeNTimes-10 959494 12622 ns/op 232 B/op 12 allocs/op
BenchmarkEncodeNChars-10 1000000000 2.046 ns/op 0 B/op 0 allocs/op
BenchmarkDecodeNTimes-10 2758072 4345 ns/op 96 B/op 3 allocs/op
BenchmarkDecodeNTokens-10 18689725 648.5 ns/op 7 B/op 0 allocs/op
PASS
ok github.com/cohere-ai/tokenizers 126.681s
Run equivalent Rust tests with cargo bench
.
decode_n_times time: [3.9812 µs 3.9874 µs 3.9939 µs]
change: [-0.4103% -0.1338% +0.1275%] (p = 0.33 > 0.05)
No change in performance detected.
Found 7 outliers among 100 measurements (7.00%)
7 (7.00%) high mild
decode_n_tokens time: [651.72 ns 661.73 ns 675.78 ns]
change: [+0.3504% +2.0016% +3.5507%] (p = 0.01 < 0.05)
Change within noise threshold.
Found 7 outliers among 100 measurements (7.00%)
2 (2.00%) high mild
5 (5.00%) high severe
Please refer to CONTRIBUTING.md for information on how to contribute a PR to this project.