Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add new integrations in langchain and llamaindex #192

Merged
merged 7 commits into from
Oct 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
197 changes: 153 additions & 44 deletions fern/pages/integrations/cohere-and-langchain/chat-on-langchain.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -18,24 +18,26 @@ Running Cohere Chat with LangChain doesn't require many prerequisites, consult t

### Cohere Chat with LangChain

To use [Cohere chat](/docs/chat-api) with LangChain, simply create a [ChatCohere](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/chat_models/cohere.py) object and pass in the message or message history. In the example below, you will need to add your Cohere API key.
To use [Cohere chat](/docs/chat-api) with LangChain, simply create a [ChatCohere](https://python.langchain.com/docs/integrations/chat/cohere/) object and pass in the message or message history. In the example below, you will need to add your Cohere API key.

```python PYTHON
from langchain_community.chat_models import ChatCohere
from langchain_cohere import ChatCohere
from langchain_core.messages import AIMessage, HumanMessage

cohere_chat_model = ChatCohere(cohere_api_key="{API_KEY}")
# Define the Cohere LLM
llm = ChatCohere(cohere_api_key="COHERE_API_KEY",
model="command-r-plus-08-2024")

# Send a chat message without chat history
current_message = [HumanMessage(content="knock knock")]
print(cohere_chat_model(current_message))
print(llm(current_message))

# Send a chat message with chat history, note the last message is the current user message
current_message_and_history = [
HumanMessage(content="knock knock"),
AIMessage(content="Who's there?"),
HumanMessage(content="Tank") ]
print(cohere_chat_model(current_message_and_history))
print(llm(current_message_and_history))
```

### Cohere Agents with LangChain
Expand All @@ -47,29 +49,38 @@ To use Cohere's multi hop agent create a `create_cohere_react_agent` and pass in
For example, using an internet search tool to get essay writing advice from Cohere with citations:

```python PYTHON
from langchain.agents import AgentExecutor
from langchain_cohere.chat_models import ChatCohere
from langchain_cohere import ChatCohere
from langchain_cohere.react_multi_hop.agent import create_cohere_react_agent
from langchain.agents import AgentExecutor
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.prompts import ChatPromptTemplate

# Internet search tool - you can use any tool, and there are lots of community tools in LangChain.
# To use the Tavily tool you will need to set an API key in the TAVILY_API_KEY environment variable.
os.environ["TAVILY_API_KEY"] = "TAVILY_API_KEY"
internet_search = TavilySearchResults()

# Create and run the Cohere agent
# Set a Cohere API key in the COHERE_API_KEY environment variable.
llm = ChatCohere()
# Define the Cohere LLM
llm = ChatCohere(cohere_api_key="COHERE_API_KEY",
model="command-r-plus-08-2024")

# Create an agent
agent = create_cohere_react_agent(
llm=llm,
tools=[internet_search],
prompt=ChatPromptTemplate.from_template("{question}"),
)

# Create an agent executor
agent_executor = AgentExecutor(agent=agent, tools=[internet_search], verbose=True)

response = agent_executor.invoke({
"question": "I want to write an essay. Any tips?",
})
# Generate a response
response = agent_executor.invoke(
{
"question": "I want to write an essay. Any tips?",
}
)

# See Cohere's response
print(response.get("output"))
# Cohere provides exact citations for the sources it used
Expand All @@ -85,65 +96,75 @@ To use Cohere's [retrieval augmented generation (RAG)](/docs/retrieval-augmented
In this example, we use the [wikipedia retriever](https://python.langchain.com/docs/integrations/retrievers/wikipedia) but any [retriever supported by LangChain](https://python.langchain.com/docs/integrations/retrievers) can be used here. In order to set up the wikipedia retriever you need to install the wikipedia python package using `%pip install --upgrade --quiet wikipedia`. With that done, you can execute this code to see how a retriever works:

```python PYTHON
from langchain.retrievers import CohereRagRetriever
from langchain_cohere import CohereRagRetriever
from langchain.retrievers import WikipediaRetriever
from langchain_community.chat_models import ChatCohere
from langchain_cohere import ChatCohere

# User query we will use for the generation
user_query = "What is cohere?"
# Load the cohere chat model
cohere_chat_model = ChatCohere(cohere_api_key="{API_KEY}")
# Create the cohere rag retriever using the chat model
rag = CohereRagRetriever(llm=cohere_chat_model, connectors=[])
# Define the Cohere LLM
llm = ChatCohere(cohere_api_key="COHERE_API_KEY",
model="command-r-plus-08-2024")
# Create the Cohere rag retriever using the chat model
rag = CohereRagRetriever(llm=llm, connectors=[])
# Create the wikipedia retriever
wiki_retriever = WikipediaRetriever()
# Get the relevant documents from wikipedia
wiki_docs = wiki_retriever.get_relevant_documents(user_query )
wiki_docs = wiki_retriever.invoke(user_query)
# Get the cohere generation from the cohere rag retriever
docs = rag.get_relevant_documents(user_query ,source_documents=wiki_docs)
docs = rag.invoke(user_query, documents=wiki_docs)
# Print the documents
print("Documents:")
for doc in docs[:-1]:
print(doc.metadata)
print("\n\n" + doc.page_content)
print("\n\n" + "-" * 30 + "\n\n")
# Print the final generation
# Print the final generation
answer = docs[-1].page_content
print("Answer:")
print(answer)
# Print the final citations
citations = docs[-1].metadata['citations']
print(citations)
# Print the final citations
citations = docs[-1].metadata["citations"]
print("Citations:")
print(docs[-1].__dict__)
```

#### Using Documents

In this example, we take documents (which might be generated in other parts of your application) and pass them into the [CohereRagRetriever](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/retrievers/cohere_rag_retriever.py) object:

```python PYTHON
from langchain.retrievers import CohereRagRetriever
from langchain_community.chat_models import ChatCohere
from langchain_cohere import CohereRagRetriever
from langchain_cohere import ChatCohere
from langchain_core.documents import Document

# Load the cohere chat model
cohere_chat_model = ChatCohere(cohere_api_key="{API_KEY}")
# Create the cohere rag retriever using the chat model
rag = CohereRagRetriever(llm=cohere_chat_model, connectors=[])
docs = rag.get_relevant_documents(
# Define the Cohere LLM
llm = ChatCohere(cohere_api_key="COHERE_API_KEY",
model="command-r-plus-08-2024")

# Create the Cohere rag retriever using the chat model
rag = CohereRagRetriever(llm=llm, connectors=[])
docs = rag.invoke(
"Does LangChain support cohere RAG?",
source_documents=[
documents=[
Document(page_content="LangChain supports cohere RAG!", metadata={"id": "id-1"}),
Document(page_content="The sky is blue!", metadata={"id": "id-2"}),
],
)

# Print the documents
print("Documents:")
for doc in docs[:-1]:
print(doc.metadata)
print("\n\n" + doc.page_content)
print("\n\n" + "-" * 30 + "\n\n")
# Print the final generation
# Print the final generation
answer = docs[-1].page_content
print("Answer:")
print(answer)
# Print the final citations
# Print the final citations
citations = docs[-1].metadata['citations']
print("Citations:")
print(citations)
```

Expand All @@ -154,24 +175,112 @@ In this example, we create a generation with a [connector](/docs/overview-rag-co
Here's a code sample illustrating how to use a connector:

```python PYTHON
from langchain.retrievers import CohereRagRetriever
from langchain_community.chat_models import ChatCohere
from langchain_cohere import CohereRagRetriever
from langchain_cohere import ChatCohere
from langchain_core.documents import Document

# Load the cohere chat model
cohere_chat_model = ChatCohere(cohere_api_key="{API_KEY}")
# Create the cohere rag retriever using the chat model with the web search connector
rag = CohereRagRetriever(llm=cohere_chat_model, connectors=[{"id": "web-search"}])
docs = rag.get_relevant_documents("Who founded Cohere?")
# Define the Cohere LLM
llm = ChatCohere(cohere_api_key="COHERE_API_KEY",
model="command-r-plus-08-2024")

# Create the Cohere rag retriever using the chat model with the web search connector
rag = CohereRagRetriever(llm=llm, connectors=[{"id": "web-search"}])
docs = rag.invoke("Who founded Cohere?")
# Print the documents
print("Documents:")
for doc in docs[:-1]:
print(doc.metadata)
print("\n\n" + doc.page_content)
print("\n\n" + "-" * 30 + "\n\n")
# Print the final generation
# Print the final generation
answer = docs[-1].page_content
print("Answer:")
print(answer)
# Print the final citations
# Print the final citations
citations = docs[-1].metadata['citations']
print("Citations:")
print(citations)
```
#### Using the `create_stuff_documents_chain` Chain
This chain takes a list of documents and formats them all into a prompt, then passes that prompt to an LLM. It passes ALL documents, so you should make sure it fits within the context window of the LLM you are using.

Note: this feature is currently in beta.

```python PYTHON
from langchain_cohere import ChatCohere
from langchain_core.documents import Document
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains.combine_documents import create_stuff_documents_chain

prompt = ChatPromptTemplate.from_messages(
[("human", "What are everyone's favorite colors:\n\n{context}")]
)

# Define the Cohere LLM
llm = ChatCohere(cohere_api_key="COHERE_API_KEY",
model="command-r-plus-08-2024")

chain = create_stuff_documents_chain(llm, prompt)

docs = [
Document(page_content="Jesse loves red but not yellow"),
Document(page_content = "Jamal loves green but not as much as he loves orange")
]

chain.invoke({"context": docs})
```

### Structured Output Generation
Cohere supports generating JSON objects to structure and organize the model’s responses in a way that can be used in downstream applications.

You can specify the `response_format` parameter to indicate that you want the response in a JSON object format.

```python PYTHON
from langchain_cohere import ChatCohere

# Define the Cohere LLM
llm = ChatCohere(cohere_api_key="COHERE_API_KEY",
model="command-r-plus-08-2024")

res = llm.invoke("John is five years old", response_format={
"type": "json_object",
"schema": {
"title": "Person",
"description": "Identifies the age and name of a person",
"type": "object",
"properties": {
"name": { "type": "string", "description": "Name of the person" },
"age": { "type": "number", "description": "Age of the person" },
},
"required": [
"name",
"age",
],
}
}
)

print(res)
```

### Text Summarization

You can use the `load_summarize_chain` chain to perform text summarization.

```python PYTHON
from langchain_cohere import ChatCohere
from langchain.chains.summarize import load_summarize_chain
from langchain_community.document_loaders import WebBaseLoader

loader = WebBaseLoader("https://docs.cohere.com/docs/cohere-toolkit")
docs = loader.load()

# Define the Cohere LLM
llm = ChatCohere(cohere_api_key="COHERE_API_KEY",
model="command-r-plus-08-2024",
temperature=0)

chain = load_summarize_chain(llm, chain_type="stuff")

chain.invoke({"input_documents": docs})
```
Loading
Loading