Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

slide_mean and slide_sum #367

Draft
wants to merge 2 commits into
base: dev
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,8 @@ S3method(bake,step_adjust_latency)
S3method(bake,step_epi_ahead)
S3method(bake,step_epi_lag)
S3method(bake,step_epi_slide)
S3method(bake,step_epi_slide_mean)
S3method(bake,step_epi_slide_sum)
S3method(bake,step_growth_rate)
S3method(bake,step_lag_difference)
S3method(bake,step_population_scaling)
Expand Down Expand Up @@ -62,6 +64,8 @@ S3method(prep,step_adjust_latency)
S3method(prep,step_epi_ahead)
S3method(prep,step_epi_lag)
S3method(prep,step_epi_slide)
S3method(prep,step_epi_slide_mean)
S3method(prep,step_epi_slide_sum)
S3method(prep,step_growth_rate)
S3method(prep,step_lag_difference)
S3method(prep,step_population_scaling)
Expand Down Expand Up @@ -92,6 +96,8 @@ S3method(print,step_adjust_latency)
S3method(print,step_epi_ahead)
S3method(print,step_epi_lag)
S3method(print,step_epi_slide)
S3method(print,step_epi_slide_mean)
S3method(print,step_epi_slide_sum)
S3method(print,step_growth_rate)
S3method(print,step_lag_difference)
S3method(print,step_naomit)
Expand Down Expand Up @@ -202,6 +208,8 @@ export(step_epi_ahead)
export(step_epi_lag)
export(step_epi_naomit)
export(step_epi_slide)
export(step_epi_slide_mean)
export(step_epi_slide_sum)
export(step_growth_rate)
export(step_lag_difference)
export(step_population_scaling)
Expand Down Expand Up @@ -272,6 +280,8 @@ importFrom(glue,glue)
importFrom(hardhat,extract_recipe)
importFrom(hardhat,refresh_blueprint)
importFrom(hardhat,run_mold)
importFrom(lubridate,is.period)
importFrom(lubridate,time_length)
importFrom(magrittr,"%>%")
importFrom(magrittr,extract2)
importFrom(recipes,bake)
Expand Down
188 changes: 188 additions & 0 deletions R/step_epi_slide_mean.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,188 @@
#' Calculate a rolling mean
#'
#' `step_epi_slide_mean()` creates a *specification* of a recipe step that will
#' generate one or more new columns of derived data by computing a sliding
#' mean along existing data.
#'
#'
#' @inheritParams step_epi_lag
#' @param before,after non-negative integers.
#' How far `before` and `after` each `time_value` should
#' the sliding window extend? Any value provided for either
#' argument must be a single, non-`NA`, non-negative,
#' [integer-compatible][vctrs::vec_cast] number of time steps. Endpoints of
#' the window are inclusive. Common settings:
#' * For trailing/right-aligned windows from `time_value - time_step(k)` to
#' `time_value`, use `before=k, after=0`. This is the most likely use case
#' for the purposes of forecasting.
#' * For center-aligned windows from `time_value - time_step(k)` to
#' `time_value + time_step(k)`, use `before=k, after=k`.
#' * For leading/left-aligned windows from `time_value` to
#' `time_value + time_step(k)`, use `after=k, after=0`.
#'
#' You may also pass a [lubridate::period], like `lubridate::weeks(1)` or a
#' character string that is coercible to a [lubridate::period], like
#' `"2 weeks"`.
#' @template step-return
#'
#' @export
#' @examples
#' library(dplyr)
#' jhu <- case_death_rate_subset %>%
#' filter(time_value >= as.Date("2021-01-01"), geo_value %in% c("ca", "ny"))
#' rec <- epi_recipe(jhu) %>%
#' step_epi_slide(case_rate, death_rate,
#' .f = \(x) mean(x, na.rm = TRUE),
#' before = 6L
#' )
#' bake(prep(rec, jhu), new_data = NULL)
step_epi_slide_mean <-
function(recipe,
...,
before = 0L,
after = 0L,
role = "predictor",
prefix = "epi_slide_mean_",
skip = FALSE,
id = rand_id("epi_slide_mean")) {
if (!is_epi_recipe(recipe)) {
rlang::abort("This recipe step can only operate on an `epi_recipe`.")
}
arg_is_scalar(before, after)
before <- try_period(before)
after <- try_period(after)
arg_is_chr_scalar(role, prefix, id)
arg_is_lgl_scalar(skip)
add_step(
recipe,
step_epi_slide_mean_new(
terms = enquos(...),
before = before,
after = after,
role = role,
trained = FALSE,
prefix = prefix,
keys = epi_keys(recipe),
columns = NULL,
skip = skip,
id = id
)
)
}


step_epi_slide_mean_new <-
function(terms,
before,
after,
role,
trained,
prefix,
keys,
columns,
skip,
id) {
step(
subclass = "epi_slide_mean",
terms = terms,
before = before,
after = after,
role = role,
trained = trained,
prefix = prefix,
keys = keys,
columns = columns,
skip = skip,
id = id
)
}



#' @export
prep.step_epi_slide_mean <- function(x, training, info = NULL, ...) {
col_names <- recipes::recipes_eval_select(x$terms, data = training, info = info)

check_type(training[, col_names], types = c("double", "integer"))
time_type <- attributes(training)$metadata$time_type
before <- lubridate_period_to_integer(x$before, time_type)
after <- lubridate_period_to_integer(x$after, time_type)
step_epi_slide_mean_new(
terms = x$terms,
before = before,
after = after,
role = x$role,
trained = TRUE,
prefix = x$prefix,
keys = x$keys,
columns = col_names,
skip = x$skip,
id = x$id
)
}

#' lubridate converts to seconds by default, and as.integer doesn't throw errors if it isn't actually an integer
#' @importFrom lubridate time_length is.period
#' @keywords internal
lubridate_period_to_integer <- function(value, time_type) {
if (is.period(value)) {
if (time_type == "day") {
value <- time_length(value, unit = "day")
} else if (time_type == "week") {
value <- time_length(value, unit = "week")
} else {
cli_abort(
"unsupported time type of {time_type}. Use integer instead of lubridate period.",
class = "epipredict__step_epi_slide_mean__unsupported_error"
)
}
if (value %% 1 !=0) {
cli_abort(
"Converted `before` value of {before} is not an integer.",
class = "epipredict__step_epi_slide_mean__unsupported_error"
)
}
value <- as.integer(value)
}
return(value)
}


#' @export
bake.step_epi_slide_mean <- function(object, new_data, ...) {
recipes::check_new_data(names(object$columns), object, new_data)
col_names <- as.vector(object$columns)
name_prefix <- object$prefix
new_names <- glue::glue("{name_prefix}{col_names}")
## ensure no name clashes
new_data_names <- colnames(new_data)
intersection <- new_data_names %in% new_names
if (any(intersection)) {
nms <- new_data_names[intersection]
cli_abort(
c("In `step_epi_slide_mean()` a name collision occurred. The following variable names already exist:",
`*` = "{.var {nms}}"
),
call = caller_env(),
class = "epipredict__step__name_collision_error"
)
}
renaming <- glue::glue("slide_value_{col_names}")
names(renaming) <- new_names
names(new_names) <- glue::glue("slide_value_{col_names}")
new_data %>%
group_by(across(all_of(object$keys[-1]))) %>%
epi_slide_mean(col_names, before = object$before, after = object$after) %>%
rename(renaming)
}


#' @export
print.step_epi_slide_mean <- function(x, width = max(20, options()$width - 30), ...) {
print_epi_step(
x$columns, x$terms, x$trained,
title = "Calculating epi_slide for ",
conjunction = "with", extra_text = x$f_name
)
invisible(x)
}
160 changes: 160 additions & 0 deletions R/step_epi_slide_sum.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
#' Calculate a rolling sum
#'
#' `step_epi_slide_sum()` creates a *specification* of a recipe step that will
#' generate one or more new columns of derived data by computing a sliding
#' sum along existing data.
#'
#'
#' @inheritParams step_epi_lag
#' @param before,after non-negative integers.
#' How far `before` and `after` each `time_value` should
#' the sliding window extend? Any value provided for either
#' argument must be a single, non-`NA`, non-negative,
#' [integer-compatible][vctrs::vec_cast] number of time steps. Endpoints of
#' the window are inclusive. Common settings:
#' * For trailing/right-aligned windows from `time_value - time_step(k)` to
#' `time_value`, use `before=k, after=0`. This is the most likely use case
#' for the purposes of forecasting.
#' * For center-aligned windows from `time_value - time_step(k)` to
#' `time_value + time_step(k)`, use `before=k, after=k`.
#' * For leading/left-aligned windows from `time_value` to
#' `time_value + time_step(k)`, use `after=k, after=0`.
#'
#' You may also pass a [lubridate::period], like `lubridate::weeks(1)` or a
#' character string that is coercible to a [lubridate::period], like
#' `"2 weeks"`.
#' @template step-return
#'
#' @export
#' @examples
#' library(dplyr)
#' jhu <- case_death_rate_subset %>%
#' filter(time_value >= as.Date("2021-01-01"), geo_value %in% c("ca", "ny"))
#' rec <- epi_recipe(jhu) %>%
#' step_epi_slide_sum(case_rate, death_rate,
#' before = 6L
#' )
#' bake(prep(rec, jhu), new_data = NULL)
step_epi_slide_sum <-
function(recipe,
...,
before = 0L,
after = 0L,
role = "predictor",
prefix = "epi_slide_sum_",
skip = FALSE,
id = rand_id("epi_slide_sum")) {
if (!is_epi_recipe(recipe)) {
rlang::abort("This recipe step can only operate on an `epi_recipe`.")
}
arg_is_scalar(before, after)
before <- try_period(before)
after <- try_period(after)
arg_is_chr_scalar(role, prefix, id)
arg_is_lgl_scalar(skip)
add_step(
recipe,
step_epi_slide_sum_new(
terms = enquos(...),
before = before,
after = after,
role = role,
trained = FALSE,
prefix = prefix,
keys = epi_keys(recipe),
columns = NULL,
skip = skip,
id = id
)
)
}


step_epi_slide_sum_new <-
function(terms,
before,
after,
role,
trained,
prefix,
keys,
columns,
skip,
id) {
step(
subclass = "epi_slide_sum",
terms = terms,
before = before,
after = after,
role = role,
trained = trained,
prefix = prefix,
keys = keys,
columns = columns,
skip = skip,
id = id
)
}



#' @export
prep.step_epi_slide_sum <- function(x, training, info = NULL, ...) {
col_names <- recipes::recipes_eval_select(x$terms, data = training, info = info)

check_type(training[, col_names], types = c("double", "integer"))
time_type <- attributes(training)$metadata$time_type
before <- lubridate_period_to_integer(x$before, time_type)
after <- lubridate_period_to_integer(x$after, time_type)
step_epi_slide_sum_new(
terms = x$terms,
before = before,
after = after,
role = x$role,
trained = TRUE,
prefix = x$prefix,
keys = x$keys,
columns = col_names,
skip = x$skip,
id = x$id
)
}

#' @export
bake.step_epi_slide_sum <- function(object, new_data, ...) {
recipes::check_new_data(names(object$columns), object, new_data)
col_names <- as.vector(object$columns)
name_prefix <- object$prefix
new_names <- glue::glue("{name_prefix}{col_names}")
## ensure no name clashes
new_data_names <- colnames(new_data)
intersection <- new_data_names %in% new_names
if (any(intersection)) {
nms <- new_data_names[intersection]
cli_abort(
c("In `step_epi_slide_sum()` a name collision occurred. The following variable names already exist:",
`*` = "{.var {nms}}"
),
call = caller_env(),
class = "epipredict__step__name_collision_error"
)
}
renaming <- glue::glue("slide_value_{col_names}")
names(renaming) <- new_names
names(new_names) <- glue::glue("slide_value_{col_names}")
new_data %>%
group_by(across(all_of(object$keys[-1]))) %>%
epi_slide_sum(col_names, before = object$before, after = object$after) %>%
rename(all_of(renaming))
}


#' @export
print.step_epi_slide_sum <- function(x, width = max(20, options()$width - 30), ...) {
print_epi_step(
x$columns, x$terms, x$trained,
title = "Calculating epi_slide for ",
conjunction = "with", extra_text = x$f_name
)
invisible(x)
}
Loading
Loading