This code is a python implementation of the p- and s-wave velocity to density conversion approach after Goes et al. (2000). The implementation was optimised for regular 3D grids using lookup tables instead of Newton iterations.
Goes et al. (2000) regard the expansion coefficient as temperature dependent
using the relation by Saxena and Shen (1992). In VelocityConversion
, the user
can additionally choose between a constant expansion coefficient or a pressure-
and temperature dependent coefficient that was derived from Hacker and Abers
(2004).
For detailed information on the physics behind the approach have a look at the original paper by Goes et al. (2000).
VelocityConversion
requires Python 3 and numpy. Install numpy
and
VelocityConversion
by running
pip install numpy velocityconversion
To uninstall VelocityConversion
, run
pip uninstall velocityconversion
If you want to use the very latest version, or want to contribute, clone the repository to you local hard drive:
git clone https://github.com/cmeessen/VelocityConversion.git
or, if you haven an SSH key associated to your account:
git clone [email protected]:cmeessen/VelocityConversion.git
To check whether everything is working run the tests
python test.py
If the output looks like this, everything is working fine:
test_vp_AlphaConst (__main__.TestVelocityConversion) ... ok
test_vs_AlphaConst (__main__.TestVelocityConversion) ... ok
test_vs_AlphaPT (__main__.TestVelocityConversion) ... ok
test_vs_AlphaT (__main__.TestVelocityConversion) ... ok
----------------------------------------------------------------------
Ran 4 tests in 1.633s
OK
In order to use the code as command line tool, add the ./Examples
directory
to your PATH
, e.g. in your bash profile:
export PATH=/path/to/VelocityConversion/Examples:$PATH
Alternatively you can move the bash script
VelocityConversion to a place that is within
your PATH
. Now the bash script VelocityConversion
can be executed:
VelocityConversion
Usage: VelocityConversion FileIn -type <P|S> [optional args]
Optional arguments:
-AlphaT
-AlphaPT
-dT <val>
-comp <Filename>
-h | --help
-NN
-out <FileOut>
-scaleV <value>
-setQ <1|2>
-v | -verbose
-XFe <val>
--version
The steps to prepare a conversion are
- definition of mantle rock composition in a
*.csv
file using the mineral terminology of MinDB.csv - provide a velocity distribution on a regular 3D grid where columns are
x y z v
- run
VelocityConversion
specifying the velocity type with-type P
or-type S
Working examples for the usage as command line tool are provided in the script RunExamples.sh.
VelocityConversion can also be imported as a Python module. Therefore, navigate to the folder that contains your clone of the repository (and setup.py) and execute
pip install -e .
Now, the module can be imported to Python:
from VelocityConversion import MantleConversion
MC = MantleConversion()
A short working example for a conversion is:
from VelocityConversion import MantleConversion
MC = MantleConversion()
MC.LoadFile("./Examples/VsSL2013.dat")
MC.SetVelType("S")
MC.DefaultMineralogy()
MC.FillTables()
MC.CalcPT()
MC.SaveFile("./Examples/VsSL2013_out.dat")
For a more complete documentation on how to use VelocityConversion
as a Python
module please visit the
documentation.
The database that contains the physical properties of the individual mineral
phases is stored in MinDB.csv.
Mineral parameters can be edited, or new minerals added. A new mineral phase
should then be referred to in the code or the assemblage file using the name
that was assigned in the phase
column of MinDB.csv
.
Please see CONTRIBUTING.md if you want to contribute to
VelocityConversion
.
If you use this code, please consider citing it as
Meeßen, Christian (2019): "VelocityConversion (v1.1.2)". Zenodo, http://doi.org/10.5281/zenodo.5897455.
or refer to CITATION.cff.
Berckhemer, H., W. Kampfmann, E. Aulbach, and H. Schmeling. “Shear Modulus and Q of Forsterite and Dunite near Partial Melting from Forced-Oscillation Experiments.” Physics of the Earth and Planetary Interiors, Special Issue Properties of Materials at High Pressures and High Temperatures, 29, no. 1 (July 1, 1982): 30–41. doi:10.1016/0031-9201(82)90135-2.
Goes, S., R. Govers, and P. Vacher. “Shallow Mantle Temperatures under Europe from P and S Wave Tomography.” Journal of Geophysical Research 105, no. 11 (2000): 153–11. doi:10.1029/1999jb900300.
Hacker, Bradley R., and Geoffrey A. Abers. “Subduction Factory 3: An Excel Worksheet and Macro for Calculating the Densities, Seismic Wave Speeds, and H2O Contents of Minerals and Rocks at Pressure and Temperature.” Geochemistry, Geophysics, Geosystems 5, no. 1 (January 1, 2004): Q01005. doi:10.1029/2003GC000614.
Kennett, B. L. N., E. R. Engdahl, and R. Buland. “Constraints on Seismic Velocities in the Earth from Traveltimes.” Geophysical Journal International 122, no. 1 (July 1, 1995): 108–24. doi:10.1111/j.1365-246X.1995.tb03540.x.
Saxena, Surendra K., and Guoyin Shen. “Assessed Data on Heat Capacity, Thermal Expansion, and Compressibility for Some Oxides and Silicates.” Journal of Geophysical Research: Solid Earth 97, no. B13 (Dezember 1992): 19813–25. doi:10.1029/92JB01555.
Schaeffer, A. J., and S. Lebedev. “Global Shear Speed Structure of the Upper Mantle and Transition Zone.” Geophysical Journal International 194, no. 1 (July 1, 2013): 417–49. doi:10.1093/gji/ggt095.
Sobolev, Stephan V., Hermann Zeyen, Gerald Stoll, Friederike Werling, Rainer Altherr, and Karl Fuchs. “Upper Mantle Temperatures from Teleseismic Tomography of French Massif Central Including Effects of Composition, Mineral Reactions, Anharmonicity, Anelasticity and Partial Melt.” Earth and Planetary Science Letters 139, no. 1–2 (März 1996): 147–63. doi:10.1016/0012-821X(95)00238-8.
Licence: GNU General Public Licence, Version 3, 29 June 2007
Copyright (2017): Christian Meeßen, Potsdam, Germany
VelocityConversion is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. VelocityConversion is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a cop y of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.