Skip to content

Code to compute information about Shimura curves with level structure and load the data that has already been computed

Notifications You must be signed in to change notification settings

ciaran-schembri/ShimCurve

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

The code in this repo is for Shimura curves with level structure. It can be used to compute invariants such as the genus, write the invariants to a formatted string and read data directly into MAGMA from text files if stored for those paramaters.

Fix $(O,\pm \mu,N)$ where $O$ is (a maximal) order in an indefinite rational quaternion algebra $B$, $\mu$ is a polarized element and $N$ is an integer.

In analogy with the $H < \mathrm{GL}_2(\mathbb{Z}/N\mathbb{Z})$ for modular curves, there is an $H$ which depends on on the triple above and has an associated Shimura curve $X_H$. This requires some more explanation:

  • Let $\mathrm{Aut}_{\pm \mu}(O)$ be the automorphisms of $O$ which preserve $\pm \mu$.
  • $(O/N)^\times$ is just the units of the ring $O/N$.
  • $G = \mathrm{Aut}_{\pm \mu}(O) \ltimes (O/N)^\times$, with the semidirect product naturally defined.

$G$ plays the role of $\mathrm{GL}2(\mathbb{Z}/N\mathbb{Z})$, $(O/N)^\times$ is where the Galois representation lives if the surface has QM defined already and $\mathrm{Aut}{\pm \mu}(O)$ is like refined Atkin-Lehner involutions. A PQM surface has its Galois representatin contained in $G$, this is called the enhanced representation, see section 3.5 of https://arxiv.org/abs/2308.15193 for more details.

Make sure you are working one directory above this repository. To load the intrinsics do

AttachSpec("ShimCurve/spec");

Types

Since it is not straightforward to work with $G$ directly in MAGMA, new 'types' have been created to support it. These are:

- AlgQuatProj :: B^x/Q^x, the quaternion algebra modulo scalars :: QuaternionAlgebraModuloScalars(B::AlgQuat)
- AlgQuatProjElt :: an element of AlgQuatProj :: ElementModuloScalars(BxmodFx::AlgQuatProj, x::AlgQuatElt)
- AlgOrdRes :: O/N :: quo(O::AlgQuatOrd, N::RngIntElt)
- AlgOrdResElt :: an element of AlgOrdRes :: OmodNElement(OmodN::AlgQuatOrdRes, x::AlgQuatOrdElt)
- AlgQuatEnh :: the semidirect product G, allows for N=0 :: EnhancedSemidirectProduct(O::AlgQuatOrd: N:=0)
- AlgQuatEnhElt :: an element of G :: EnhancedElement(Ocirc::AlgQuatEnh, tup::<>)

Example

B<i,j>:=QuaternionAlgebra<RationalField() | 3, -1>;
O:=MaximalOrder(B);
BxmodQx:=QuaternionAlgebraModuloScalars(B);
OmodN:=quo(O,3);
w:=BxmodQx!(-3*j+3*i*j);
w^2;
18
w^2 eq BxmodQx!1;
true 18
Genh:=EnhancedSemidirectProduct(O: N:=3);
x:=OmodN!2;
Genh!<w,x>
;
<-3*j + 3*k, [2 0 0 0]>
Genh!<1,1> eq (Genh!<w,x>)^2;
true

Main Intrinsics

intrinsic HasPolarizedElementOfDegree(O::AlgQuatOrd,d::RngIntElt) -> BoolElt, AlgQuatElt 
  {return an element mu of O such that mu^2 + d*disc(O) = 0 if it exists.}

intrinsic IsTwisting(O::AlgQuatOrd,mu::AlgQuatElt) -> BoolElt
  {(O,mu) is twisting (of degree del = -mu^2/disc(O)) if there exists chi in O and N_Bx(O)
   such that chi^2 = m, m|Disc(O) and mu*chi = -chi*mu. Return true or false; if true 
   return [mu, chi] up to scaling}
   
intrinsic Aut(O::AlgQuatOrd,mu::AlgQuatElt) -> Any
  {Return Aut_{\pm mu}(O). It will be a map from D_n to B^x/Q^x where the codomain 
  is Aut_{\pm mu}(O)}

intrinsic NormalizingElementToGL4(w::AlgQuatElt,O::AlgQuatOrd) -> GrpMatElt 
intrinsic NormalizingElementToGL4modN(w::AlgQuatElt,O::AlgQuatOrd, N::RngIntElt) -> GrpMatElt 
  {O is an order over R. For an element g \in N_Bx(O) the map phi_g : b |--> g^-1bg
  is R-linear hence [g] is an element of M_4(R) after fixing a basis
  this function computes [g] and also returns the R-basis of O.}

intrinsic UnitGroupToGL4(x::AlgQuatOrdElt) -> GrpMatElt 
intrinsic UnitGroupToGL4modN(x::AlgQuatOrdElt,N::RngIntElt) -> GrpMatElt 
  {O is an order over R, this returns a matrix [lambda_g] wrt to a basis
  which is the right regular representation
  lambda_x : y --> y*x where g \in GL_1(O)}

intrinsic EnhancedSemidirectInGL4(Ocirc::AlgQuatEnh) -> Map 
  {create the map from the semidirect product to GL4(R). R depends on the base 
  ring of Ocirc.}

intrinsic EnhancedElementInGL4(g::AlgQuatEnhElt) -> GrpMatElt
  {the enhanced element in GL4(R), R depends on the base ring of g}

intrinsic EnhancedElementRecord(elt::AlgQuatEnhElt) -> Any
  {given <w,x> in Autmu(O) \rtimes (O/N)^x or Autmu(O) \rtimes O^x  return <w,x> as a 
  record along with its embedding in GL_4xGL_4 and just GL_4}

intrinsic EnhancedImageGL4(AutmuO::Map, OmodN::AlgQuatOrdRes) -> GrpMat
  {return the image of the enhanced semidirect product group G in GL4(Z/NZ). The second return value 

intrinsic NormalizerPlusGenerators(O::AlgQuatOrd) -> SeqEnum 
  {return generators of the positive norm elements which normalize O}

intrinsic SemidirectToNormalizerKernel(O::AlgQuatOrd,mu::AlgQuatOrdElt) -> SeqEnum 
  {return the kernel of the map form the enhanced semidirect product to N_B^x(O). 
  It is necessarily cyclic and the second value is the generator of the group}

intrinsic NormalizerPlusGeneratorsEnhanced(O::AlgQuatOrd,mu::AlgQuatOrdElt) -> Tup 
  {return generators of the positive norm elements which normalize O in the enhanced semidirect product}

intrinsic EnhancedRamificationData(H::GrpMat, G::GrpMat,O::AlgQuatOrd,mu::AlgQuatElt) -> Any
  {return the image of the elliptic elements under the monodromy map}

intrinsic EnhancedGenus(sigma::SeqEnum) -> RngIntElt
  {Compute genus from permutation triple
   f:X -> Y. 2gX-2 = deg(f)*(2gY-2) + sum_x\inX (ex -1). 
   ex is the ramification degree of x. An element of S_n acts on sheets of the cover. 
  x is ramified if x is sent to another point under the action of an isotropy subgroup,
  i.e. the cycle type corresponding to x has length >1. The length is the ramification degree.}

intrinsic EnumerateH(O::AlgQuatOrd,mu::AlgQuatOrdElt,N::RngIntElt : minimal:=false,PQMtorsion:=false,verbose:=true, lowgenus:=false, write:=false) -> Any
  {return all of the enhanced subgroups in a list with each one being a record}

Example

B<i,j,k>:=QuaternionAlgebra< Rationals() | 3,-1 >;
O:=QuaternionOrder([ 1, 1/2 + 1/2*i + 1/2*j + 1/2*k, 1/2 - 1/2*i + 1/2*j - 1/2*k, 1/2 - 1/2*i - 1/2*j + 1/2*k\
 ]);
N:=4;
Ocirc:=EnhancedSemidirectProduct(O : N:=4);
 
tr,mu:=HasPolarizedElementOfDegree(O,1);
mu;
-3*j + k
assert mu^2 eq -6;
IsTwisting(O,mu);
true [ -3*j + k, -j + k ]
AutmuO:=Aut(O,mu);
AutmuO;
Mapping from: GrpPC to Quotient by scalars of Quaternion Algebra with base ring Rational Field, defined by i^2 = 3, j^2 = -1
<Id($), 1>
<$.1, -3*j + k>
<$.2, -j + k>
<$.1 * $.2, -2*i>
 
 
Hgens:=[ Ocirc!< 1, [ 1, 0, 2, 0 ] >, Ocirc!< 1, [ 3, 1, 0, 1 ] >, Ocirc!< 1, [ 1, 2, 2, 0 ] >, Ocirc!< 1, [ \
3, 0, 3, 3 ] >, Ocirc!< 1, [ 3, 2, 3, 1 ] >, Ocirc!< 1, [ 3, 0, 0, 0 ] >, Ocirc!< -3*j + k, [ 2, 0, 1, 0 ] > ];
HgensGL4:=[ EnhancedElementInGL4modN(g,N) : g in Hgens ];
HGL4:=sub< GL(4,ResidueClassRing(N)) | HgensGL4 >;
 
EnhancedElementRecord(Hgens[2]);
rec<recformat<n: IntegerRing(), enhanced, GL4xGL4, GL4> | 
enhanced := <1, [3 1 0 1]>,
GL4xGL4 := <
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1],

[3 1 0 1]
[0 2 1 0]
[0 3 2 0]
[2 3 3 1]
>,
GL4 := [3 1 0 1]
[0 2 1 0]
[0 3 2 0]
[2 3 3 1]>
 
FixedSubspace(HGL4);
Abelian Group isomorphic to Z/2
Defined on 1 generator in supergroup:
$.1 = 2*$.2 + 2*$.4
Relations:
2*$.1 = 0

G:=EnhancedImageGL4(AutmuO,O,N);
elliptic:=EnhancedEllipticElements(O,mu);
elliptic; 
[
<-3*j + k, [1 0 0 0]>,
<-j + k, [ 0  0 -1  0]>,
<-2*i, [-1  0  0  1]>
]
 
mon:=EnhancedRamificationData(HGL4,G,O,mu);
mon;
[
(1, 2)(3, 4),
(1, 3)(2, 5)(4, 6),
(1, 4, 6, 3, 2, 5)
]
Genus(mon);
0

Data

The list of $H$ for each triple $(O,\pm \mu, N)$ is currently stored as a string in data/genera-tables with the following columns:

Genus ? (Fuchsian) Index ? #H ? Torsion ? Gal(L|Q) ? AutmuO norms ? Split semidirect ? Generators ? Ramification Data

To load the data type:

list := GeneraTableToRecords(6,1,3);
list[50];
rec<recformat<n: IntegerRing(), genus, fuchsindex, torsioninvariants, endogroup, AutmuOnorms, Hsplit, generators, ramification_data> | 
genus := 1,
fuchsindex := 12,
torsioninvariants := [],
endogroup :=  C1 ,
AutmuOnorms := { 1 },
Hsplit := true,
generators :=  [ < 1, [ 2, 0, 0, 0 ] >, < 1, [ 2, 0, 2, 2 ] >, < 1, [ 0, 0, 1, 2 ] > ] ,
ramification_data := [
(1, 2)(3, 4)(5, 6)(7, 9)(8, 10)(11, 12),
(1, 3)(2, 5)(4, 7, 11, 10)(6, 9, 12, 8),
(1, 4, 8, 11, 9, 5)(2, 6, 10, 12, 7, 3)
]>

About

Code to compute information about Shimura curves with level structure and load the data that has already been computed

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published