Christian Fruhwirth-Reisinger 1,2, Wei Lin 3, Dušan Malić 1,2, Horst Bischof 1, Horst Possegger 1,2
1Graz University of Technology, 2Christian Doppler Laboratory for Embedded Machine Learning, 3Johannes Kepler University Linz
[2024-11-20]:
Code released.
[2024-09-10]:
ViLGOD has been accepted for BMVC 2024 as an oral presentation. See you in Glasgow!
[2024-08-07]:
ViLGOD arXiv paper released.
- Initial release.
- Add installation details.
- Add visual code run config for zero-shot detection.
- Update arXiv paper.
- Add additional run & evaluation instructions.
- Upate run scripts for multi-CPU/GPU inference.
- Ubuntu 22.04
- Python 3.8
- CUDA 11.7
Creat virtual environment and intstall required packages
- Create virtual environment
virtualenv vilgod -p python3.8
source <home/to/virtualenv>/bin/activate
- Install required packages
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install spconv-cu117
pip install numpy==1.21.5 \
llvmlite==0.39.0 \
numba==0.56.4 \
tensorboardX==2.4.1 \
easydict==1.9 \
pyyaml==6.0 \
scikit-image==0.20.0 \
tqdm==4.64.0 \
SharedArray==3.1.0 \
protobuf==3.19.6 \
open3d==0.15.2 \
gpustat==1.0.0 \
av2==0.2.0 \
kornia==0.5.8 \
waymo-open-dataset-tf-2-11-0
pip install hdbscan \
hydra-core \
ftfy \
regex \
pyransac3d \
fvcore \
torch_scatter \
filterpy
pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu117_pyt1131/download.html
pip install numpy==1.23.5
Clone and install required repositories
- Clone repository and create folder structure
git clone [email protected]:chreisinger/ViLGOD.git
cd ViLGOD
mkdir models
mkdir data
cd models
mkdir clip
cd ..
python setup.py develop
- Insall adapted Patchwork++
cd third_party/patchwork-plusplus
python setup.py install
-
Download clip model to: ViLGOD/models/clip
-
Install OpenPCDet (outside of ViLGOD folder)
git clone https://github.com/open-mmlab/OpenPCDet.git
cd OpenPCDet
python setup.py develop
-
Extract data following the OpenPCDet tutorial. No ground truth database needed!
-
Create softlinks of your extracted data into ViLGOD (we support Waymo Open Dataset v1.2 and Argoverse 2)
ln -s <path/to/extracted/data> ViLGOD/data/
Make sure the CLIP folder is part of your python path:
export PYTHONPATH=${PYTHONPATH}:<path/to/ViLGOD>/third_party/CLIP
For the Waymo Open Dataset:
cd tools
python preprocess_data.py preprocessor=waymo
For the Argoverse 2 dataset:
cd tools
python preprocess_data.py preprocessor=argoverse
If you find our code or paper helpful, please leave a ⭐ and cite us:
@inproceedings{fruhwirth2024vilgod,
title={Vision-Language Guidance for LiDAR-based Unsupervised 3D Object Detection},
author={Christian Fruhwirth-Reisinger and Wei Lin and Dušan Malić and Horst Bischof and Horst Possegger},
year={2024},
booktitle={British Machine Vision Conference}
}
Many thanks to Patchwork++, OpenPCDet, MODEST, CLIP and PointCLIPv2 for code and models.