Skip to content

changlin31/DS-Net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Dynamic Slimmable Network (DS-Net)

This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral).

image

Architecture of DS-Net. The width of each supernet stage is adjusted adaptively by the slimming ratio ρ predicted by the gate.

image

Accuracy vs. complexity on ImageNet.

Pretrained Supernet

  • Supernet Checkpoint

  • Here is a summary of sub-networks performance of the pretrained supernet:

    Subnetwork 0 1 2 3 4 5 6 7 8 9 10 11 12 13
    MAdds 133M 153M 175M 200M 226M 255M 286M 319M 355M 393M 433M 475M 519M 565M
    Top-1 (%) 70.1 70.4 70.8 71.2 71.6 72.0 72.4 72.7 73.0 73.3 73.6 73.9 74.1 74.6
    Top-5 (%) 89.4 89.6 89.9 90.2 90.3 90.6 90.9 91.0 91.2 91.4 91.5 91.7 91.8 92.0

Usage

1. Requirements

2. Stage I: Supernet Training

For example, train dynamic slimmable MobileNet supernet with 8 GPUs (takes about 2 days):

python -m torch.distributed.launch --nproc_per_node=8 train.py /PATH/TO/ImageNet -c ./configs/mobilenetv1_bn_uniform.yml

3. Stage II: Gate Training

  • Modify resume: in configs/mobilenetv1_bn_uniform_reset_bn.yml to your supernet checkpoint. Recalibrate BN before gate training

    python -m torch.distributed.launch --nproc_per_node=8 train.py /PATH/TO/ImageNet -c ./configs/mobilenetv1_bn_uniform_reset_bn.yml
    
  • Modify resume: in configs/mobilenetv1_bn_uniform_gate.yml to your supernet checkpoint after BN recalibration or our pretrained Supernet Checkpoint. Start gate training

    python -m torch.distributed.launch --nproc_per_node=8 train.py /PATH/TO/ImageNet -c ./configs/mobilenetv1_bn_uniform_gate.yml
    

Citation

If you use our code for your paper, please cite:

@inproceedings{li2021dynamic,
  author = {Changlin Li and
            Guangrun Wang and
            Bing Wang and
            Xiaodan Liang and
            Zhihui Li and
            Xiaojun Chang},
  title = {Dynamic Slimmable Network},
  booktitle = {CVPR},
  year = {2021}
}