@logf()
is a Python decorator designed for uncomplicated and immediate addition of logging to functions. Its main goal is to provide developers with a tool that can be added quickly to any function and left in place without further adjustments.
I originally made @logf()
for my own use, but I hope it can be useful to others as well.
- Async Support: Incorporated from version 1.6 onwards.
- Broad Python 3 Compatibility: Designed to work seamlessly across multiple Python 3 versions,
- Effortless Logging: Implement logging without disrupting the flow of your code.
- Leave-and-Forget: Once integrated, no further adjustments are needed.
- Encourages Logic Compartmentalization.
- Customizable: Numerous settings available for tailoring logging behavior to specific needs.
- Environment Variables: Overriding default settings made easy with environment variables.
- Log Exceptions: Option to log exceptions before they are raised.
To integrate @logf()
into your projects:
pip install logfunc
Simply import the decorator to start using it:
from logfunc import logf
Apply the @logf()
decorator to functions you intend to log:
from logfunc import logf
@logf()
def concatenate_strings(str1: str, str2: str) -> str:
return str1 + str2
This setup ensures automatic logging of function name, parameters, return values, and execution time.
level
: Set the log level (DEBUG, INFO, WARNING, etc.).log_args
&log_return
: Control whether to log arguments and return values.max_str_len
: Limit the length of logged strings.log_exec_time
: Option to log the execution time.single_msg
: Consolidate all log data into a single message.use_print
: Choose toprint()
log messages instead of using standard logging.log_stack_info
: Passstack_info=$x
to.log()
but not printuse_logger
: Pass a logger name or logger object to use instead of logging.logidentifier
: Add a unique identifier to enter/exit log messages.
print_all used to be an env var, now just unset LOGF_LEVEL and set USE_PRINT=True for the same effect.
Modify the behavior of @logf()
using environment variables:
Env Var | Example Values |
---|---|
LOGF_LEVEL | DEBUG, INFO, WARNING |
LOGF_MAX_STR_LEN | 10, 50, 10000000 |
LOGF_SINGLE_MSG | True, False |
LOGF_USE_PRINT | True, False |
LOGF_STACK_INFO | True, False |
LOGF_LOG_EXEC_TIME | True, False |
LOGF_LOG_ARGS | True, False |
LOGF_LOG_RETURN | True, False |
LOGF_USE_LOGGER | 'logger_name' |
LOGF_LOG_LEVEL | DEBUG, INFO, WARNING |
LOGF_IDENTIFIER | True, False |
See the following output for an example of how an env var will affect @logf()
behaviour:
With LOGF_USE_PRINT=True
:
mym2@Carys-MacBook-Pro logf % gitpoll ~/test
Running once...
-> __init__()[CwKVbK] | (<CmdExec >, 'git rev-parse --abbrev-ref HEAD') {}
<- __init__()[CwKVbK] 0.0048s | None
-> __init__()[BIimGf] | (<CmdExec >, 'git config --get branch.test.remote') {}
<- __init__()[BIimGf] 0.0040s | None
-> __init__()[ED1XW0] | (<CmdExec >, 'git config --get branch.test.merge') {}
<- __init__()[ED1XW0] 0.0039s | None
-> __init__()[dsPXjJ] | (<CmdExec >, 'git rev-parse refs/remotes//') {}
<- __init__()[dsPXjJ] 0.0044s | None
-> __init__()[5rkgc9] | (<CmdExec >, 'git rev-parse HEAD') {}
<- __init__()[5rkgc9] 0.0037s | None
-> __init__()[GDti62] | (<CmdExec >, 'git fetch') {}
<- __init__()[GDti62] 1.1160s | None
With LOGF_SINGLE_MSG=True
:
mym2@Carys-MacBook-Pro logf % gitpoll ~/test
Running once...
__init__() 0.0050s | (<CmdExec >, 'git rev-parse --abbrev-ref HEAD') {} | None
__init__() 0.0041s | (<CmdExec >, 'git config --get branch.test.remote') {} | None
__init__() 0.0041s | (<CmdExec >, 'git config --get branch.test.merge') {} | None
__init__() 0.0041s | (<CmdExec >, 'git rev-parse refs/remotes//') {} | None
__init__() 0.0038s | (<CmdExec >, 'git rev-parse HEAD') {} | None
__init__() 1.0993s | (<CmdExec >, 'git fetch') {} | None
Here are a couple of real-world examples of @logf()
usage:
from logfunc import logf
# Database operations
@logf(level='ERROR')
def db_insert(item):
# Insert item into database
pass
# Asynchronous tasks in an application
@logf()
async def fetch_data(url):
# Fetch data from URL asynchronously
return data
Activate/create your venv with python3 -m venv venv
and source venv/bin/activate
if you haven't already.
Run pip install -r requirements_dev.txt
to install the testing dependencies.
Run pytest tests.py
to run the tests.
Output should look like this:
---------- coverage: platform darwin, python 3.11.5-final-0 ----------
Name Stmts Miss Cover Missing
---------------------------------------------------
logfunc/__init__.py 2 0 100%
logfunc/config.py 59 0 100%
logfunc/defaults.py 2 0 100%
logfunc/main.py 69 0 100%
logfunc/msgs.py 8 0 100%
logfunc/utils.py 35 0 100%
logfunc/version.py 1 0 100%
---------------------------------------------------
TOTAL 176 0 100%
==================================== 25 passed in 0.06s
You can also just run the tests.py
file directly.
Contributions are welcome! Please feel free to submit a pull request or open an issue.
MIT