X-PDNet: Accurate Joint Plane Instance Segmentation and Monocular Depth Estimation with Cross-Task Distillation and Boundary Correction (BMVC 2023)
This is an implementation for X-PDNet: a multi-task learning framework for joint plane instance segmentation and depth estimation
The official paper can be found at paper. Thank the PlaneRecNet for a great baseline implementation
- Use conda to create an env:
conda env create -f environment.yml
- Create a folder "weights", download resnet and X-PDNet checkpoint via this link and put on "weights" folder.
- Inference a single image (*.png or *.jpg for mat):
python3 simple_inference.py --config=XPDNet_101_config --trained_model=weights/XPDNet_101_9_125000.pth --image=example
_images/scene0134_01_frame_color_756.jpg
- Inference a folder:
python3 simple_inference.py --config=XPDNet_101_config --trained_model=weights/XPDNet_101_9_125000.pth --images=input_folder:output_folder