-
Notifications
You must be signed in to change notification settings - Fork 2.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
ellswift: introduce ElligatorSwift encoding and decoding funcs #2219
base: master
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,392 @@ | ||
package btcec | ||
|
||
import ( | ||
"crypto/rand" | ||
"fmt" | ||
|
||
"github.com/btcsuite/btcd/chaincfg/chainhash" | ||
) | ||
|
||
var ( | ||
// c is sqrt(-3) (mod p) | ||
c FieldVal | ||
|
||
cBytes = [32]byte{ | ||
0x0a, 0x2d, 0x2b, 0xa9, 0x35, 0x07, 0xf1, 0xdf, | ||
0x23, 0x37, 0x70, 0xc2, 0xa7, 0x97, 0x96, 0x2c, | ||
0xc6, 0x1f, 0x6d, 0x15, 0xda, 0x14, 0xec, 0xd4, | ||
0x7d, 0x8d, 0x27, 0xae, 0x1c, 0xd5, 0xf8, 0x52, | ||
} | ||
|
||
ellswiftTag = []byte("bip324_ellswift_xonly_ecdh") | ||
|
||
// ErrPointNotOnCurve is returned when we're unable to find a point on the | ||
// curve. | ||
ErrPointNotOnCurve = fmt.Errorf("point does not exist on secp256k1 curve") | ||
) | ||
|
||
func init() { | ||
c.SetByteSlice(cBytes[:]) | ||
} | ||
|
||
// XSwiftEC() takes two field elements (u, t) and gives us an x-coordinate that | ||
// is on the secp256k1 curve. This is used to take an ElligatorSwift-encoded | ||
// public key (u, t) and return the point on the curve it maps to. | ||
// TODO: Rewrite these so to avoid new(FieldVal).Add(...) usage? | ||
// NOTE: u, t MUST be normalized. The result x is normalized. | ||
func XSwiftEC(u, t *FieldVal) *FieldVal { | ||
Crypt-iQ marked this conversation as resolved.
Show resolved
Hide resolved
|
||
// 1. Let u' = u if u != 0, else = 1 | ||
if u.IsZero() { | ||
u.SetInt(1) | ||
} | ||
|
||
// 2. Let t' = t if t != 0, else 1 | ||
if t.IsZero() { | ||
t.SetInt(1) | ||
} | ||
|
||
// 3. Let t'' = t' if g(u') != -(t'^2); t'' = 2t' otherwise | ||
// g(x) = x^3 + ax + b, a = 0, b = 7 | ||
|
||
// Calculate g(u'). | ||
gu := new(FieldVal).SquareVal(u).Mul(u).AddInt(7).Normalize() | ||
|
||
// Calculate the right-hand side of the equation (-t'^2) | ||
rhs := new(FieldVal).SquareVal(t).Negate(1).Normalize() | ||
|
||
if gu.Equals(rhs) { | ||
// t'' = 2t' | ||
t = t.Add(t) | ||
} | ||
|
||
// 4. X = (u'^3 + b - t''^2) / (2t'') | ||
tSquared := new(FieldVal).SquareVal(t).Negate(1) | ||
xNum := new(FieldVal).SquareVal(u).Mul(u).AddInt(7).Add(tSquared) | ||
xDenom := new(FieldVal).Add2(t, t).Inverse() | ||
x := xNum.Mul(xDenom) | ||
|
||
// 5. Y = (X+t'') / (u' * c) | ||
yNum := new(FieldVal).Add2(x, t) | ||
yDenom := new(FieldVal).Mul2(u, &c).Inverse() | ||
y := yNum.Mul(yDenom) | ||
|
||
// 6. Return the first x in (u'+4Y^2, -X/2Y - u'/2, X/2Y - u'/2) for which | ||
// x^3 + b is square. | ||
|
||
// 6a. Calculate u' +4Y^2 and determine if x^3+7 is square. | ||
ySqr := new(FieldVal).Add(y).Mul(y) | ||
quadYSqr := new(FieldVal).Add(ySqr).MulInt(4) | ||
firstX := new(FieldVal).Add(u).Add(quadYSqr) | ||
|
||
firstXCurve := new(FieldVal).Add(firstX).Square().Mul(firstX).AddInt(7) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Maybe refactor the check for if x is on the curve into a separate function since it's used 3 times? |
||
|
||
// Now determine if firstXCurve is square (on the curve). | ||
if new(FieldVal).SquareRootVal(firstXCurve) { | ||
return firstX.Normalize() | ||
} | ||
|
||
// 6b. Calculate -X/2Y - u'/2 and determine if x^3 + 7 is square | ||
doubleYInv := new(FieldVal).Add(y).Add(y).Inverse() | ||
xDivDoubleYInv := new(FieldVal).Add(x).Mul(doubleYInv) | ||
negXDivDoubleYInv := new(FieldVal).Add(xDivDoubleYInv).Negate(1) | ||
invTwo := new(FieldVal).AddInt(2).Inverse() | ||
negUDivTwo := new(FieldVal).Add(u).Mul(invTwo).Negate(1) | ||
secondX := new(FieldVal).Add(negXDivDoubleYInv).Add(negUDivTwo) | ||
|
||
secondXCurve := new(FieldVal).Add(secondX).Square().Mul(secondX).AddInt(7) | ||
|
||
// Now determine if secondXCurve is square. | ||
if new(FieldVal).SquareRootVal(secondXCurve) { | ||
return secondX.Normalize() | ||
} | ||
|
||
// 6c. Calculate X/2Y -u'/2 and determine if x^3 + 7 is square | ||
thirdX := new(FieldVal).Add(xDivDoubleYInv).Add(negUDivTwo) | ||
|
||
thirdXCurve := new(FieldVal).Add(thirdX).Square().Mul(thirdX).AddInt(7) | ||
|
||
// Now determine if thirdXCurve is square. | ||
if new(FieldVal).SquareRootVal(thirdXCurve) { | ||
return thirdX.Normalize() | ||
} | ||
|
||
// Should have found a square above. | ||
panic("unreachable - no calculated x-values were square") | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Not sure about the panic here. If there's a bug somewhere in the library and we reach this part of the code, it'll crash the nodes. Returning an error will allow us to gracefully shut the node down in case we reach here. |
||
} | ||
|
||
// XSwiftECInv takes two field elements (u, x) (where x is on the curve) and | ||
// returns a field element t. This is used to take a random field element u and | ||
// a point on the curve and return a field element t where (u, t) forms the | ||
// ElligatorSwift encoding. | ||
// TODO: Rewrite these so to avoid new(FieldVal).Add(...) usage? | ||
// NOTE: u, x MUST be normalized. The result `t` is normalized. | ||
func XSwiftECInv(u, x *FieldVal, caseNum int) *FieldVal { | ||
Crypt-iQ marked this conversation as resolved.
Show resolved
Hide resolved
|
||
v := new(FieldVal) | ||
s := new(FieldVal) | ||
twoInv := new(FieldVal).AddInt(2).Inverse() | ||
|
||
if caseNum&2 == 0 { | ||
// If lift_x(-x-u) succeeds, return None | ||
if _, found := liftX(new(FieldVal).Add(x).Add(u).Negate(2)); found { | ||
return nil | ||
} | ||
|
||
// Let v = x | ||
v.Add(x) | ||
|
||
// Let s = -(u^3+7)/(u^2 + uv + v^2) | ||
uSqr := new(FieldVal).Add(u).Square() | ||
vSqr := new(FieldVal).Add(v).Square() | ||
sDenom := new(FieldVal).Add(u).Mul(v).Add(uSqr).Add(vSqr) | ||
sNum := new(FieldVal).Add(uSqr).Mul(u).AddInt(7) | ||
|
||
s = sDenom.Inverse().Mul(sNum).Negate(1) | ||
} else { | ||
// Let s = x - u | ||
negU := new(FieldVal).Add(u).Negate(1) | ||
s.Add(x).Add(negU).Normalize() | ||
|
||
// If s = 0, return None | ||
if s.IsZero() { | ||
return nil | ||
} | ||
|
||
// Let r be the square root of -s(4(u^3 + 7) + 3u^2s) | ||
uSqr := new(FieldVal).Add(u).Square() | ||
lhs := new(FieldVal).Add(uSqr).Mul(u).AddInt(7).MulInt(4) | ||
rhs := new(FieldVal).Add(uSqr).MulInt(3).Mul(s) | ||
|
||
// Add the two terms together and multiply by -s. | ||
lhs.Add(rhs).Normalize().Mul(s).Negate(1) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Does it not matter if we call
passes the tests and the BIP specifies that the modulo be done afterwards |
||
|
||
r := new(FieldVal) | ||
if !r.SquareRootVal(lhs) { | ||
// If no square root was found, return None. | ||
return nil | ||
} | ||
|
||
if caseNum&1 == 1 && r.Normalize().IsZero() { | ||
// If case & 1 = 1 and r = 0, return None. | ||
return nil | ||
} | ||
|
||
// Let v = (r/s - u)/2 | ||
sInv := new(FieldVal).Add(s).Inverse() | ||
uNeg := new(FieldVal).Add(u).Negate(1) | ||
|
||
v.Add(r).Mul(sInv).Add(uNeg).Mul(twoInv) | ||
} | ||
|
||
w := new(FieldVal) | ||
|
||
if !w.SquareRootVal(s) { | ||
// If no square root was found, return None. | ||
return nil | ||
} | ||
|
||
switch caseNum & 5 { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Feels like we can reduce code duplication here |
||
case 0: | ||
// If case & 5 = 0, return -w(u(1-c)/2 + v) | ||
oneMinusC := new(FieldVal).Add(&c).Negate(1).AddInt(1) | ||
t := new(FieldVal).Add(u).Mul(oneMinusC).Mul(twoInv).Add(v).Mul(w). | ||
Negate(1).Normalize() | ||
|
||
return t | ||
|
||
case 1: | ||
// If case & 5 = 1, return w(u(1+c)/2 + v) | ||
onePlusC := new(FieldVal).Add(&c).AddInt(1) | ||
t := new(FieldVal).Add(u).Mul(onePlusC).Mul(twoInv).Add(v).Mul(w). | ||
Normalize() | ||
|
||
return t | ||
|
||
case 4: | ||
// If case & 5 = 4, return w(u(1-c)/2 + v) | ||
oneMinusC := new(FieldVal).Add(&c).Negate(1).AddInt(1) | ||
t := new(FieldVal).Add(u).Mul(oneMinusC).Mul(twoInv).Add(v).Mul(w). | ||
Normalize() | ||
|
||
return t | ||
|
||
case 5: | ||
// If case & 5 = 5, return -w(u(1+c)/2 + v) | ||
onePlusC := new(FieldVal).Add(&c).AddInt(1) | ||
t := new(FieldVal).Add(u).Mul(onePlusC).Mul(twoInv).Add(v).Mul(w). | ||
Negate(1).Normalize() | ||
|
||
return t | ||
} | ||
|
||
panic("should not reach here") | ||
} | ||
|
||
// XElligatorSwift takes the x-coordinate of a point on secp256k1 and generates | ||
// ElligatorSwift encoding of that point composed of two field elements (u, t). | ||
// NOTE: x MUST be normalized. The return values u, t are normalized. | ||
func XElligatorSwift(x *FieldVal) (*FieldVal, *FieldVal, error) { | ||
Crypt-iQ marked this conversation as resolved.
Show resolved
Hide resolved
|
||
// We'll choose a random `u` value and a random case so that we can | ||
// generate a `t` value. | ||
for { | ||
// Choose random u value. | ||
var randUBytes [32]byte | ||
_, err := rand.Read(randUBytes[:]) | ||
if err != nil { | ||
return nil, nil, err | ||
} | ||
|
||
u := new(FieldVal) | ||
overflow := u.SetBytes(&randUBytes) | ||
if overflow == 1 { | ||
u.Normalize() | ||
} | ||
|
||
// Choose a random case in the interval [0, 7] | ||
var randCaseByte [1]byte | ||
_, err = rand.Read(randCaseByte[:]) | ||
if err != nil { | ||
return nil, nil, err | ||
} | ||
|
||
caseNum := randCaseByte[0] & 7 | ||
|
||
// Find t, if none is found, continue with the loop. | ||
t := XSwiftECInv(u, x, int(caseNum)) | ||
if t != nil { | ||
return u, t, nil | ||
} | ||
} | ||
} | ||
|
||
// EllswiftCreate generates a random private key and returns that along with | ||
// the ElligatorSwift encoding of its corresponding public key. | ||
func EllswiftCreate() (*PrivateKey, [64]byte, error) { | ||
Crypt-iQ marked this conversation as resolved.
Show resolved
Hide resolved
|
||
var randPrivKeyBytes [64]byte | ||
|
||
// Generate a random private key | ||
_, err := rand.Read(randPrivKeyBytes[:]) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Dumb question but is the reason why we don't have to get a random number between 1..p-1 is because |
||
if err != nil { | ||
return nil, [64]byte{}, err | ||
} | ||
|
||
privKey, _ := PrivKeyFromBytes(randPrivKeyBytes[:]) | ||
|
||
// Fetch the x-coordinate of the public key. | ||
x := getXCoord(privKey) | ||
|
||
// Get the ElligatorSwift encoding of the public key. | ||
u, t, err := XElligatorSwift(x) | ||
if err != nil { | ||
return nil, [64]byte{}, err | ||
} | ||
|
||
uBytes := u.Bytes() | ||
tBytes := t.Bytes() | ||
|
||
// ellswift_pub = bytes(u) || bytes(t), its encoding as 64 bytes | ||
var ellswiftPub [64]byte | ||
copy(ellswiftPub[0:32], (*uBytes)[:]) | ||
copy(ellswiftPub[32:64], (*tBytes)[:]) | ||
|
||
// Return (priv, ellswift_pub) | ||
return privKey, ellswiftPub, nil | ||
} | ||
|
||
// EllswiftECDHXOnly takes the ElligatorSwift-encoded public key of a | ||
// counter-party and performs ECDH with our private key. | ||
func EllswiftECDHXOnly(ellswiftTheirs [64]byte, privKey *PrivateKey) ([32]byte, | ||
Crypt-iQ marked this conversation as resolved.
Show resolved
Hide resolved
|
||
error) { | ||
|
||
// Let u = int(ellswift_theirs[:32]) mod p. | ||
// Let t = int(ellswift_theirs[32:]) mod p. | ||
uBytesTheirs := ellswiftTheirs[0:32] | ||
tBytesTheirs := ellswiftTheirs[32:64] | ||
|
||
var uTheirs FieldVal | ||
overflow := uTheirs.SetByteSlice(uBytesTheirs[:]) | ||
if overflow { | ||
uTheirs.Normalize() | ||
} | ||
|
||
var tTheirs FieldVal | ||
overflow = tTheirs.SetByteSlice(tBytesTheirs[:]) | ||
if overflow { | ||
tTheirs.Normalize() | ||
} | ||
|
||
// Calculate bytes(x(priv⋅lift_x(XSwiftEC(u, t)))) | ||
xTheirs := XSwiftEC(&uTheirs, &tTheirs) | ||
pubKey, found := liftX(xTheirs) | ||
if !found { | ||
return [32]byte{}, ErrPointNotOnCurve | ||
} | ||
|
||
var pubJacobian JacobianPoint | ||
pubKey.AsJacobian(&pubJacobian) | ||
|
||
var sharedPoint JacobianPoint | ||
ScalarMultNonConst(&privKey.Key, &pubJacobian, &sharedPoint) | ||
sharedPoint.ToAffine() | ||
|
||
return *sharedPoint.X.Bytes(), nil | ||
} | ||
|
||
// getXCoord fetches the corresponding public key's x-coordinate given a | ||
// private key. | ||
func getXCoord(privKey *PrivateKey) *FieldVal { | ||
var result JacobianPoint | ||
ScalarBaseMultNonConst(&privKey.Key, &result) | ||
result.ToAffine() | ||
return &result.X | ||
} | ||
|
||
// liftX returns the point P with x-coordinate `x` and even y-coordinate. If a | ||
// point exists on the curve, it returns true and false otherwise. | ||
// TODO: Use quadratic residue formula instead (see: BIP340)? | ||
func liftX(x *FieldVal) (*PublicKey, bool) { | ||
ySqr := new(FieldVal).Add(x).Square().Mul(x).AddInt(7) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. How about using the
|
||
|
||
y := new(FieldVal) | ||
if !y.SquareRootVal(ySqr) { | ||
// If we've reached here, the point does not exist on the curve. | ||
return nil, false | ||
} | ||
|
||
if !y.Normalize().IsOdd() { | ||
return NewPublicKey(x, y), true | ||
} | ||
|
||
// Negate y if it's odd. | ||
if !y.Negate(1).Normalize().IsOdd() { | ||
return NewPublicKey(x, y), true | ||
} | ||
|
||
return nil, false | ||
} | ||
|
||
// V2Ecdh performs x-only ecdh and returns a shared secret composed of a tagged | ||
// hash which itself is composed of two ElligatorSwift-encoded public keys and | ||
// the x-only ecdh point. | ||
func V2Ecdh(priv *PrivateKey, ellswiftTheirs, ellswiftOurs [64]byte, | ||
initiating bool) (*chainhash.Hash, error) { | ||
|
||
ecdhPoint, err := EllswiftECDHXOnly(ellswiftTheirs, priv) | ||
if err != nil { | ||
return nil, err | ||
} | ||
|
||
if initiating { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. nit: I think would it make sense to only have the ellswiftOurs / ellswiftTheirs order toggle in the if to make clear that everything else stays the same? Something like this:
|
||
// Initiating, place our public key encoding first. | ||
var msg []byte | ||
msg = append(msg, ellswiftOurs[:]...) | ||
msg = append(msg, ellswiftTheirs[:]...) | ||
msg = append(msg, ecdhPoint[:]...) | ||
return chainhash.TaggedHash(ellswiftTag, msg), nil | ||
} | ||
|
||
var msg []byte | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Can pre-allocate here
|
||
msg = append(msg, ellswiftTheirs[:]...) | ||
msg = append(msg, ellswiftOurs[:]...) | ||
msg = append(msg, ecdhPoint[:]...) | ||
return chainhash.TaggedHash(ellswiftTag, msg), nil | ||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
nit: instead of relying on the init function you should also be able to do this in the var section