Skip to content

1604Argus

Petr Baudis edited this page May 16, 2016 · 9 revisions

1604 HypEv Argus Experiments

Master Table

  • R_rg_2avgBV_EP100_mask_L1e-5
  • R_rg_2danBV_EP100_mask_L1e-5_W13
  • R_rg_2rnnBV_EP100_mask_L1e-4_i13d13 (8)
  • R_rg_2cnnBV_EP100_mask_L1e-4_i13d13 (8)
  • R_rg_2rnncnnBV_EP100_mask_L1e-4_i13d13 (8)
  • R_rg_2a51BV_EP100_mask_L1e-5_fasgmn_crelu
  • R_urg11299592rnnBV_EP100_mask_rmsprop_mlp
Model trn QAcc val QAcc val QF1 tst QAcc tst QF1 settings
avg 0.871582 0.816243 0.715536 0.743671 0.671109 (defaults)
±0.008774 ±0.007793 ±0.013344 ±0.019701 ±0.031045
DAN 0.883804 0.821856 0.745652 0.754351 0.691760 inp_e_dropout=0 inp_w_dropout=1/3 deep=2 pact='relu'
±0.012438 ±0.011024 ±0.022104 ±0.025300 ±0.042076
-------------------------- ---------- ---------- ---------- ---------- ----------- ----------
rnn 0.906453 0.875000 0.812159 0.822785 0.781521 inp_e_dropout=1/3 dropout=1/3
±0.012775 ±0.005396 ±0.008444 ±0.008261 ±0.011528
cnn 0.896200 0.856662 0.802337 0.821598 0.793560 inp_e_dropout=1/3 dropout=1/3
±0.018262 ±0.005804 ±0.006581 ±0.006662 ±0.006533
rnncnn 0.884963 0.860030 0.802535 0.816456 0.780175 inp_e_dropout=1/3 dropout=1/3
±0.009792 ±0.006566 ±0.007993 ±0.009081 ±0.012383
attn1511 0.935063 0.877046 0.821878 0.816456 0.764327 focus_act='sigmoid/maxnorm' cnnact='relu'
±0.021065 ±0.007928 ±0.012047 ±0.007572 ±0.012779
Ubu. rnn w/MLP 0.950765 0.912425 0.865724 0.852057 0.804517 vocabt='ubuntu' pdim=1 ptscorer=B.mlp_ptscorer dropout=0 inp_e_dropout=0 task1_conf={'ptscorer':B.dot_ptscorer, 'f_add_kw':False} opt='rmsprop'
±0.016681 ±0.004351 ±0.007591 ±0.008250 ±0.015434

Variants with different relevance modelling - no relevance, or BM25 metric in the mix.

Model trn QAcc val QAcc val QF1 tst QAcc tst QF1 settings
avg 0.872660 0.822754 0.737748 0.745570 0.695175 rel_mode=None
±0.024101 ±0.029963 ±0.050214 ±0.050540 ±0.065933
avg 0.869323 0.821108 0.715507 0.752769 0.678428 prescoring='termfreq' prescoring_weightsf='weights-anssel-termfreq-3368350fbcab42e4-bestval.h5' prescoring_input='bm25' f_add=['bm25'] f_add_S2=['bm25']
±0.029043 ±0.014130 ±0.033405 ±0.026164 ±0.047926
avg 0.742412 0.742515 nan 0.670886 nan prescoring='termfreq' prescoring_weightsf='weights-anssel-termfreq-3368350fbcab42e4-bestval.h5' prescoring_input='bm25' f_add=['bm25'] rel_mode='bm25'
±0.069382 ±0.043924 ±nan ±0.042191 ±nan
avg 0.872828 0.816243 0.737179 0.769778 0.716633 prescoring='termfreq' prescoring_weightsf='weights-anssel-termfreq-3368350fbcab42e4-bestval.h5' prescoring_input='bm25' f_add=['bm25'] f_add_S1=['bm25'] rel_mode=None
±0.007759 ±0.007922 ±0.011952 ±0.010984 ±0.017375
-------------------------- ---------- ---------- ---------- ---------- ----------- ----------
rnn 0.914736 0.868263 0.803783 0.821994 0.786475 inp_e_dropout=1/3 dropout=1/3 rel_mode=None
±0.022191 ±0.007080 ±0.011420 ±0.014596 ±0.016089
rnn 0.905352 0.866018 0.797045 0.814082 0.772631 inp_e_dropout=1/3 dropout=1/3 prescoring='termfreq' prescoring_weightsf='weights-anssel-termfreq-3368350fbcab42e4-bestval.h5' prescoring_input='bm25' f_add=['bm25'] f_add_S2=['bm25']
±0.009524 ±0.006593 ±0.011930 ±0.007909 ±0.012046
rnn 0.758689 0.762725 nan 0.700158 nan inp_e_dropout=1/3 dropout=1/3 prescoring='termfreq' prescoring_weightsf='weights-anssel-termfreq-3368350fbcab42e4-bestval.h5' prescoring_input='bm25' f_add=['bm25'] rel_mode='bm25'
±0.136521 ±0.092000 ±nan ±0.093423 ±nan
rnn 0.901413 0.874251 0.815608 0.828323 0.790401 inp_e_dropout=1/3 dropout=1/3 prescoring='termfreq' prescoring_weightsf='weights-anssel-termfreq-3368350fbcab42e4-bestval.h5' prescoring_input='bm25' f_add=['bm25'] f_add_S1=['bm25'] rel_mode=None
±0.012837 ±0.008671 ±0.013353 ±0.014834 ±0.017081
-------------------------- ---------- ---------- ---------- ---------- ----------- ----------
cnn 0.889829 0.847305 0.788506 0.817247 0.787495 inp_e_dropout=1/3 dropout=1/3 rel_mode=None
±0.029667 ±0.006622 ±0.010412 ±0.015526 ±0.012572
cnn 0.746293 0.755240 nan 0.700158 nan inp_e_dropout=1/3 dropout=1/3 prescoring='termfreq' prescoring_weightsf='weights-anssel-termfreq-3368350fbcab42e4-bestval.h5' prescoring_input='bm25' f_add=['bm25'] rel_mode='bm25'
±0.125400 ±0.085816 ±nan ±0.093348 ±nan
rnncnn 0.885774 0.854790 0.795130 0.817247 0.786409 inp_e_dropout=1/3 dropout=1/3 rel_mode=None
±0.024995 ±0.007816 ±0.017369 ±0.010726 ±0.009953
rnncnn 0.778267 0.783683 nan 0.738924 nan inp_e_dropout=1/3 dropout=1/3 prescoring='termfreq' prescoring_weightsf='weights-anssel-termfreq-3368350fbcab42e4-bestval.h5' prescoring_input='bm25' f_add=['bm25'] rel_mode='bm25'
±0.118755 ±0.085010 ±nan ±0.098486 ±nan
attn1511 0.928290 0.866018 0.809381 0.818829 0.773699 focus_act='sigmoid/maxnorm' cnnact='relu' rel_mode=None
±0.033857 ±0.008278 ±0.017342 ±0.013474 ±0.022847
attn1511 0.811284 0.786677 nan 0.729430 nan focus_act='sigmoid/maxnorm' cnnact='relu' prescoring='termfreq' prescoring_weightsf='weights-anssel-termfreq-3368350fbcab42e4-bestval.h5' prescoring_input='bm25' f_add=['bm25'] rel_mode='bm25'
±0.140512 ±0.087390 ±nan ±0.091370 ±nan
attn1511 0.932171 0.871257 0.820158 0.810918 0.763896 focus_act='sigmoid/maxnorm' cnnact='relu' prescoring='termfreq' prescoring_weightsf='weights-anssel-termfreq-3368350fbcab42e4-bestval.h5' prescoring_input='bm25' f_add=['bm25'] rel_mode=None f_add_S1=['bm25']
±0.017671 ±0.007223 ±0.009922 ±0.012153 ±0.018292
-------------------------- ---------- ---------- ---------- ---------- ----------- ----------
Ubu. rnn w/MLP 0.924930 0.912425 0.863092 0.846519 0.795959 vocabt='ubuntu' pdim=1 ptscorer=B.mlp_ptscorer dropout=0 inp_e_dropout=0 task1_conf={'ptscorer':B.dot_ptscorer, 'f_add':[]} opt='rmsprop' rel_mode=None
±0.015340 ±0.003484 ±0.005951 ±0.009069 ±0.013594
Ubu. rnn w/MLP 0.926437 0.906437 0.855672 0.830696 0.776912 vocabt='ubuntu' pdim=1 ptscorer=B.mlp_ptscorer dropout=0 inp_e_dropout=0 task1_conf={'ptscorer':B.dot_ptscorer, 'f_add':[]} opt='rmsprop' prescoring='termfreq' prescoring_weightsf='weights-anssel-termfreq-3368350fbcab42e4-bestval.h5' prescoring_input='bm25' f_add=['bm25'] rel_mode=None f_add_S1=['bm25']
±0.016855 ±0.005562 ±0.009583 ±0.018089 ±0.030604
Ubu. rnn w/MLP 0.799583 0.809880 nan 0.740506 nan vocabt='ubuntu' pdim=1 ptscorer=B.mlp_ptscorer dropout=0 inp_e_dropout=0 task1_conf={'ptscorer':B.dot_ptscorer, 'f_add':[]} opt='rmsprop' prescoring='termfreq' prescoring_weightsf='weights-anssel-termfreq-3368350fbcab42e4-bestval.h5' prescoring_input='bm25' f_add=['bm25'] rel_mode='bm25'
±0.131607 ±0.102343 ±nan ±0.099308 ±nan

(The QF1-nan'd measurements are troubled by many trainings which failed with nan loss early - so there's a lot of untrained-model accuracies in the averages for these; they should be rerun at some point.)

Model Exploration

Model trn QAcc val QAcc val QF1 tst QAcc tst QF1 settings
avg 0.626815 0.670659 nan 0.621308 nan (defaults)
±0.024750 ±0.020524 ±nan ±0.026126 ±nan
DAN 0.913809 0.848303 0.787701 0.799578 0.754505 inp_e_dropout=0 inp_w_dropout=1/3 deep=2 pact='relu' l2reg=1e-5
±0.020632 ±0.012912 ±0.028049 ±0.019803 ±0.029174
-------------------------- ---------- ---------- ---------- ---------- ----------- ----------
rnn 0.930491 0.859281 0.793455 0.806962 0.763644 (defaults)
±0.044004 ±0.007907 ±0.009231 ±0.020562 ±0.030651
cnn 0.920297 0.862275 0.801795 0.819620 0.763181 (defaults)
±0.030030 ±0.017017 ±0.033116 ±0.024479 ±0.061008
rnncnn 0.922768 0.861277 0.804602 0.812236 0.765567 (defaults)
±0.040065 ±0.009881 ±0.017815 ±0.014686 ±0.025850
attn1511 0.869632 0.841317 0.787862 0.812236 0.777503 (defaults)
±0.011013 ±0.009426 ±0.015477 ±0.009129 ±0.022301

(val QAcc is used for further tuning)

In attn1511, we previously considered sdim=2...

6x R_rg_2a51BV_EP100_s2 - 0.840319 (95% [0.835635, 0.845003]):

11289052.arien.ics.muni.cz.R_rg_2a51BV_EP100_s2 etc.
[0.844311, 0.838323, 0.844311, 0.832335, 0.838323, 0.844311, ]

The "After" version had masking disabled, after we repaired it:

6x R_rg_2avgBV_EP100_mask - 0.757485 (95% [0.707640, 0.807330]):

11290079.arien.ics.muni.cz.R_rg_2avgBV_EP100_mask etc.
[0.808383, 0.712575, 0.790419, 0.712575, 0.706587, 0.814371, ]

6x R_rg_2rnnBV_EP100_mask - 0.860279 (95% [0.855595, 0.864963]):

11290081.arien.ics.muni.cz.R_rg_2rnnBV_EP100_mask etc.
[0.856287, 0.862275, 0.856287, 0.868263, 0.862275, 0.856287, ]

6x R_rg_2cnnBV_EP100_mask - 0.852295 (95% [0.844457, 0.860133]):

11290082.arien.ics.muni.cz.R_rg_2cnnBV_EP100_mask etc.
[0.856287, 0.862275, 0.838323, 0.850299, 0.850299, 0.856287, ]

6x R_rg_2rnncnnBV_EP100_mask - 0.857285 (95% [0.839728, 0.874842]):

11290083.arien.ics.muni.cz.R_rg_2rnncnnBV_EP100_mask etc.
[0.850299, 0.832335, 0.856287, 0.868263, 0.886228, 0.850299, ]

6x R_rg_2a51BV_EP100_mask - 0.836327 (95% [0.827690, 0.844964]):

11290084.arien.ics.muni.cz.R_rg_2a51BV_EP100_mask etc.
[0.832335, 0.844311, 0.838323, 0.844311, 0.838323, 0.820359, ]

So it's important for avg performance, otherwise makes little discernable difference.

16x R_rg_2avgBV_EP100_mask_L1e-5 - 0.816242 (95% [0.808449, 0.824035]):

11290437.arien.ics.muni.cz.R_rg_2avgBV_EP100_mask_L1e-5 etc.
[0.820359, 0.790419, 0.838323, 0.826347, 0.832335, 0.820359, 0.808383, 0.784431, 0.814371, 0.808383, 0.832335, 0.826347, 0.802395, 0.820359, 0.826347, 0.808383, ]

16x R_rg_2danBV_EP100_mask_L1e-5_W13 - 0.821856 (95% [0.810832, 0.832880]):

11298376.arien.ics.muni.cz.R_rg_2danBV_EP100_mask_L1e-5_W13 etc.
[0.838323, 0.832335, 0.784431, 0.808383, 0.814371, 0.790419, 0.802395, 0.850299, 0.832335, 0.844311, 0.808383, 0.850299, 0.832335, 0.796407, 0.838323, 0.826347, ]

16x R_rg_2rnnBV_EP100_mask_L1e-4 - 0.846557 (95% [0.839706, 0.853407]):

11290087.arien.ics.muni.cz.R_rg_2rnnBV_EP100_mask_L1e-4 etc.
[0.844311, 0.850299, 0.850299, 0.844311, 0.844311, 0.862275, 0.832335, 0.868263, 0.838323, 0.856287, 0.850299, 0.832335, 0.814371, 0.862275, 0.850299, 0.844311, ]

6x R_rg_2cnnBV_EP100_mask_L1e-4 - 0.852295 (95% [0.838401, 0.866189]):

11290088.arien.ics.muni.cz.R_rg_2cnnBV_EP100_mask_L1e-4 etc.
[0.844311, 0.874251, 0.862275, 0.832335, 0.850299, 0.850299, ]

16x R_rg_2rnncnnBV_EP100_mask_L1e-4 - 0.861152 (95% [0.855601, 0.866704]):

11290089.arien.ics.muni.cz.R_rg_2rnncnnBV_EP100_mask_L1e-4 etc.
[0.856287, 0.850299, 0.856287, 0.874251, 0.856287, 0.868263, 0.880240, 0.874251, 0.850299, 0.856287, 0.868263, 0.856287, 0.862275, 0.868263, 0.862275, 0.838323, ]

16x R_rg_2a51BV_EP100_mask_L1e-4 - 0.851796 (95% [0.844186, 0.859406]):

11290090.arien.ics.muni.cz.R_rg_2a51BV_EP100_mask_L1e-4 etc.
[0.874251, 0.820359, 0.862275, 0.850299, 0.838323, 0.868263, 0.844311, 0.862275, 0.862275, 0.832335, 0.838323, 0.850299, 0.844311, 0.856287, 0.856287, 0.868263, ]

While there are no individual statistically significant results, it seems like moving back to the default l2reg of 1e-4 is not harmful at all anywhere (maybe RNN is a wee bit questionable) and that'll be better for consistency.

Trying ptscorer=1:

6x R_rg_2a51BV_EP100_mask - 0.836327 (95% [0.827690, 0.844964]):

6x R_rg_2a51BV_EP100_mask_1 - 0.675649 (95% [0.655640, 0.695658]):

11290441.arien.ics.muni.cz.R_rg_2a51BV_EP100_mask_1 etc.
[0.676647, 0.676647, 0.706587, 0.652695, 0.652695, 0.688623, ]

Oops, nada.

Trying narrower CNN:

6x R_rg_2cnnBV_EP100_mask_L1e-4 - 0.852295 (95% [0.838401, 0.866189]):

11290088.arien.ics.muni.cz.R_rg_2cnnBV_EP100_mask_L1e-4 etc.
[0.844311, 0.874251, 0.862275, 0.832335, 0.850299, 0.850299, ]

9x R_rg_2cnnBV_EP100_mask_L1e-4_c121212 - 0.844976 (95% [0.832428, 0.857524]):

11298418.arien.ics.muni.cz.R_rg_2cnnBV_EP100_mask_L1e-4_c121212 etc.
[0.820359, 0.820359, 0.838323, 0.868263, 0.856287, 0.862275, 0.844311, 0.856287, 0.838323, ]

12x R_rg_2cnnSBV_EP100_mask_L1e-4 - 0.842315 (95% [0.826757, 0.857873]):

11298430.arien.ics.muni.cz.R_rg_2cnnSBV_EP100_mask_L1e-4 etc.
[0.814371, 0.808383, 0.814371, 0.808383, 0.856287, 0.856287, 0.838323, 0.862275, 0.838323, 0.862275, 0.880240, 0.868263, ]

Nah.

Trying RNNCNN variations:

16x R_rg_2rnncnnBV_EP100_mask_L1e-4 - 0.861152 (95% [0.855601, 0.866704]):

8x R_rg_2rnncnnBV_EP100_mask_L1e-5 - 0.860778 (95% [0.852571, 0.868985]):

11304711.arien.ics.muni.cz.R_rg_2rnncnnBV_EP100_mask_L1e-5 etc.
[0.862275, 0.856287, 0.862275, 0.862275, 0.838323, 0.862275, 0.868263, 0.874251, ]

8x R_rg_2rnncnnSBV_EP100_mask_L1e-5 - 0.872754 (95% [0.867907, 0.877602]):

11304718.arien.ics.muni.cz.R_rg_2rnncnnSBV_EP100_mask_L1e-5 etc.
[0.874251, 0.880240, 0.880240, 0.868263, 0.874251, 0.874251, 0.868263, 0.862275, ]

8x R_rg_2rnncnnBV_EP100_mask_L1e-5_c121212 - 0.865269 (95% [0.855903, 0.874635]):

11304719.arien.ics.muni.cz.R_rg_2rnncnnBV_EP100_mask_L1e-5_c121212 etc.
[0.850299, 0.862275, 0.862275, 0.880240, 0.856287, 0.862275, 0.862275, 0.886228, ]

Nothing convincing. Siameseness questionably beneficial - we won't invest in a change anymore.

Trying RNN dropout:

16x R_rg_2rnnBV_EP100_mask_L1e-4 - 0.846557 (95% [0.839706, 0.853407]):

8x R_rg_2rnnBV_EP100_mask_L1e-4_i13d13 - 0.871257 (95% [0.863342, 0.879173]):

11304810.arien.ics.muni.cz.R_rg_2rnnBV_EP100_mask_L1e-4_i13d13 etc.
[0.862275, 0.874251, 0.874251, 0.880240, 0.862275, 0.886228, 0.856287, 0.874251, ]

Awesome.

What about CNN, RNN-CNN dropout?

6x R_rg_2cnnBV_EP100_mask_L1e-4 - 0.852295 (95% [0.838401, 0.866189]):

8x R_rg_2cnnBV_EP100_mask_L1e-4_i13d13 - 0.861527 (95% [0.857619, 0.865434]):

11309618.arien.ics.muni.cz.R_rg_2cnnBV_EP100_mask_L1e-4_i13d13 etc.
[0.856287, 0.856287, 0.868263, 0.862275, 0.868263, 0.856287, 0.862275, 0.862275, ]

16x R_rg_2rnncnnBV_EP100_mask_L1e-4 - 0.861152 (95% [0.855601, 0.866704]):

8x R_rg_2rnncnnBV_EP100_mask_L1e-4_i13d13 - 0.860030 (95% [0.849137, 0.870922]):

11309632.arien.ics.muni.cz.R_rg_2rnncnnBV_EP100_mask_L1e-4_i13d13 etc.
[0.838323, 0.880240, 0.868263, 0.862275, 0.850299, 0.856287, 0.874251, 0.850299, ]

Inconclusive.

attn1511 improvements:

16x R_rg_2a51BV_EP100_mask_L1e-4 - 0.851796 (95% [0.844186, 0.859406]):

3x R_rg_2a51BV_EP100_mask_L1e-4_fasgmmn_crelu - 0.884232 (95% [0.853665, 0.914798]):

x.R_rg_2a51BV_EP100_mask_L1e-4_fasgmmn_crelu etc.
[0.898204, 0.886228, 0.868263, ]

3x R_rg_2a51BV_EP100_mask_L1e-4_fasgmmn - 0.870259 (95% [0.839693, 0.900826]):

x.R_rg_2a51BV_EP100_mask_L1e-4_fasgmmn etc.
[0.868263, 0.886228, 0.856287, ]

3x R_rg_2a51BV_EP100_mask_L1e-4_cl4_crelu - 0.856287 (95% [0.844142, 0.868432]):

x.R_rg_2a51BV_EP100_mask_L1e-4_cl4_crelu etc.
[0.856287, 0.850299, 0.862275, ]

3x R_rg_2a51BV_EP100_mask_L1e-4_fasgmmn_cl4_crelu - 0.880240 (95% [0.868093, 0.892386]):

x.R_rg_2a51BV_EP100_mask_L1e-4_fasgmmn_cl4_crelu etc.
[0.886228, 0.880240, 0.874251, ]

cnnact='relu' (maybe) and focus_act='sigmoid/maxnorm' are important; clen=4 not so much.

15x R_rg_2a51BV_EP100_mask_L1e-5_fasgmn_crelu - 0.877046 (95% [0.869118, 0.884974]):

11304952.arien.ics.muni.cz.R_rg_2a51BV_EP100_mask_L1e-5_fasgmn_crelu etc.
[0.880240, 0.892216, 0.898204, 0.868263, 0.844311, 0.880240, 0.886228, 0.850299, 0.886228, 0.874251, 0.892216, 0.874251, 0.880240, 0.880240, 0.868263, ]

Transfer

16x R_urg11299592rnnBV_EP100_mask_rmsprop_mlp - 0.912426 (95% [0.908075, 0.916776]):

11305159.arien.ics.muni.cz.R_urg11299592rnnBV_EP100_mask_rmsprop_mlp etc.
[0.904192, 0.904192, 0.916168, 0.910180, 0.922156, 0.910180, 0.904192, 0.928144, 0.910180, 0.910180, 0.916168, 0.904192, 0.922156, 0.898204, 0.916168, 0.922156, ]

16x R_urg11299592rnnBV_EP100_mask_rmsprop_dot - 0.904940 (95% [0.896067, 0.913814]):

11305160.arien.ics.muni.cz.R_urg11299592rnnBV_EP100_mask_rmsprop_dot etc.
[0.904192, 0.916168, 0.880240, 0.910180, 0.904192, 0.880240, 0.910180, 0.874251, 0.898204, 0.928144, 0.898204, 0.928144, 0.928144, 0.898204, 0.922156, 0.898204, ]

MLP wins.

Try attn1511 model based on rnn pretraining...

8x R_urga51_11299592rnnBV_EP100_mask_rmsprop_mlp - 0.903443 (95% [0.898803, 0.908084]):

11310546.arien.ics.muni.cz.R_urga51_11299592rnnBV_EP100_mask_rmsprop_mlp etc.
[0.910180, 0.898204, 0.904192, 0.892216, 0.910180, 0.904192, 0.904192, 0.904192, ]

Nah.

Disabling Relevancy

3x R_rg_2a51BV_EP100_mask_L1e-4_fasgmmn_crelu - 0.884232 (95% [0.853665, 0.914798]):

3x R_rg_2a51BV_EP100_mask_L1e-4_fasgmmn_crelu_RF - 0.872255 (95% [0.817488, 0.927023]):

x.R_rg_2a51BV_EP100_mask_L1e-4_fasgmmn_crelu_RF etc.
[0.874251, 0.844311, 0.898204, ]

Old-vocab Model Exploration

16x R_rg_2avg - 0.797530 (95% [0.790835, 0.804225]):

11173959.arien.ics.muni.cz.R_rg_2avg etc.
[0.814371, 0.796407, 0.802395, 0.790419, 0.778443, 0.802395, 0.772455, 0.790419, 0.790419, 0.802395, 0.808383, 0.814371, 0.808383, 0.802395, 0.808383, 0.778443, ]

16x R_rg_2dan_L1e-5 - 0.827095 (95% [0.811798, 0.842393]):

11173973.arien.ics.muni.cz.R_rg_2dan_L1e-5 etc.
[0.796407, 0.820359, 0.808383, 0.874251, 0.814371, 0.820359, 0.874251, 0.814371, 0.856287, 0.838323, 0.802395, 0.862275, 0.820359, 0.856287, 0.796407, 0.778443, ]

16x R_rg_2rnn - 0.854416 (95% [0.845340, 0.863491]):

11173961.arien.ics.muni.cz.R_rg_2rnn etc.
[0.880240, 0.862275, 0.838323, 0.886228, 0.832335, 0.868263, 0.838323, 0.856287, 0.820359, 0.850299, 0.862275, 0.850299, 0.850299, 0.874251, 0.850299, 0.850299, ]

16x R_rg_2cnn - 0.857410 (95% [0.852213, 0.862606]):

11173962.arien.ics.muni.cz.R_rg_2cnn etc.
[0.844311, 0.856287, 0.856287, 0.862275, 0.838323, 0.868263, 0.874251, 0.850299, 0.844311, 0.856287, 0.862275, 0.862275, 0.868263, 0.868263, 0.856287, 0.850299, ]

16x R_rg_2rnncnn - 0.852170 (95% [0.842550, 0.861790]):

11173963.arien.ics.muni.cz.R_rg_2rnncnn etc.
[0.850299, 0.856287, 0.838323, 0.874251, 0.862275, 0.868263, 0.832335, 0.832335, 0.832335, 0.874251, 0.874251, 0.814371, 0.844311, 0.856287, 0.874251, 0.850299, ]

16x R_rg_2a51 - 0.834206 (95% [0.824653, 0.843760]):

11173964.arien.ics.muni.cz.R_rg_2a51 etc.
[0.838323, 0.850299, 0.850299, 0.832335, 0.844311, 0.856287, 0.838323, 0.850299, 0.808383, 0.814371, 0.820359, 0.826347, 0.802395, 0.856287, 0.808383, 0.850299, ]

Brief Parameters Check

4x R_rg_2dan - 0.694611 (95% [0.579087, 0.810135]):

4x R_rg_2dan_L1e-5 - 0.824850 (95% [0.777507, 0.872193]):

11173973.arien.ics.muni.cz.R_rg_2dan_L1e-5 etc.
[0.796407, 0.820359, 0.808383, 0.874251, ]

4x R_rg_2rnn - 0.866766 (95% [0.837109, 0.896424]):

4x R_rg_2rnn_L1e-5 - 0.875749 (95% [0.857451, 0.894046]):

11173974.arien.ics.muni.cz.R_rg_2rnn_L1e-5 etc.
[0.886228, 0.880240, 0.856287, 0.880240, ]

16x R_rg_2rnn_D0.5s2L1e-5 - 0.866766 (95% [0.857567, 0.875966]):

11206383.arien.ics.muni.cz.R_rg_2rnn_D0.5s2L1e-5 etc.
[0.832335, 0.880240, 0.856287, 0.868263, 0.892216, 0.862275, 0.850299, 0.898204, 0.874251, 0.874251, 0.868263, 0.844311, 0.868263, 0.874251, 0.880240, 0.844311, ]

8x R_rg_2rnn_S25 - 0.854042 (95% [0.839896, 0.868187]):

11215661.arien.ics.muni.cz.R_rg_2rnn_S25 etc.
[0.868263, 0.844311, 0.880240, 0.868263, 0.844311, 0.832335, 0.832335, 0.862275, ]

8x R_rg_2rnn_s1S25 - 0.850299 (95% [0.838559, 0.862039]):

11215960.arien.ics.muni.cz.R_rg_2rnn_s1S25 etc.
[0.856287, 0.868263, 0.862275, 0.850299, 0.856287, 0.850299, 0.820359, 0.838323, ]

8x R_rg_2rnn_s1E300S25 - 0.828593 (95% [0.770215, 0.886970]):

11215962.arien.ics.muni.cz.R_rg_2rnn_s1E300S25 etc.
[0.868263, 0.838323, 0.868263, 0.874251, 0.652695, 0.808383, 0.844311, 0.874251, ]

16x R_rg_2a51 - 0.834206 (95% [0.824653, 0.843760]):

16x R_rg_2a51_a1 - 0.832709 (95% [0.827016, 0.838402]):

11192762.arien.ics.muni.cz.R_rg_2a51_a1 etc.
[0.850299, 0.826347, 0.844311, 0.838323, 0.838323, 0.844311, 0.814371, 0.832335, 0.838323, 0.832335, 0.808383, 0.832335, 0.838323, 0.832335, 0.832335, 0.820359, ]

16x R_rg_2a51_p1 - 0.819985 (95% [0.808962, 0.831007]):

11192763.arien.ics.muni.cz.R_rg_2a51_p1 etc.
[0.790419, 0.808383, 0.808383, 0.826347, 0.820359, 0.820359, 0.808383, 0.844311, 0.856287, 0.802395, 0.814371, 0.814371, 0.856287, 0.790419, 0.850299, 0.808383, ]

16x R_rg_2a51_p1D0.5 - 0.833084 (95% [0.825697, 0.840470]):

11192767.arien.ics.muni.cz.R_rg_2a51_p1D0.5 etc.
[0.808383, 0.820359, 0.838323, 0.844311, 0.826347, 0.850299, 0.838323, 0.832335, 0.844311, 0.838323, 0.802395, 0.838323, 0.826347, 0.838323, 0.826347, 0.856287, ]

16x R_rg_2a51_D0.5 - 0.825224 (95% [0.817310, 0.833139]):

11200187.arien.ics.muni.cz.R_rg_2a51_D0.5 etc.
[0.796407, 0.820359, 0.820359, 0.814371, 0.820359, 0.832335, 0.814371, 0.838323, 0.838323, 0.838323, 0.814371, 0.826347, 0.826347, 0.808383, 0.862275, 0.832335, ]

16x R_rg_2a51_D0.5s2 - 0.848428 (95% [0.843547, 0.853309]):

11200190.arien.ics.muni.cz.R_rg_2a51_D0.5s2 etc.
[0.856287, 0.850299, 0.850299, 0.838323, 0.850299, 0.850299, 0.850299, 0.844311, 0.856287, 0.826347, 0.862275, 0.850299, 0.856287, 0.856287, 0.844311, 0.832335, ]

16x R_rg_2a51_D0.5s2L1e-5 - 0.849550 (95% [0.845200, 0.853901]):

11206381.arien.ics.muni.cz.R_rg_2a51_D0.5s2L1e-5 etc.
[0.838323, 0.868263, 0.850299, 0.850299, 0.856287, 0.856287, 0.844311, 0.850299, 0.838323, 0.850299, 0.850299, 0.838323, 0.844311, 0.850299, 0.844311, 0.862275, ]

16x R_rg_2a51_s2 - 0.842066 (95% [0.835309, 0.848822]):

11215612.arien.ics.muni.cz.R_rg_2a51_s2 etc.
[0.868263, 0.832335, 0.850299, 0.820359, 0.844311, 0.838323, 0.844311, 0.868263, 0.844311, 0.838323, 0.832335, 0.844311, 0.832335, 0.826347, 0.850299, 0.838323, ]  

16x R_rg_2cnn - 0.857410 (95% [0.852213, 0.862606]):

16x R_rg_2cnnS - 0.842440 (95% [0.836500, 0.848379]):

11235913.arien.ics.muni.cz.R_rg_2cnnS etc.
[0.838323, 0.832335, 0.850299, 0.820359, 0.832335, 0.844311, 0.838323, 0.856287, 0.844311, 0.856287, 0.844311, 0.832335, 0.844311, 0.838323, 0.868263, 0.838323, ]

OldVocab Ubuntu Transfer

16x R_rg_2rnn - 0.854416 (95% [0.845340, 0.863491]):

We retrained the Ubuntu Dialogue model with embdim=50 to be compatible. As before, it's pdim=1, d0. The 11226219 is also already trained to classify as MLP with Ddim=0.

4x R_urg11226212rnn_mlp - 0.889222 (95% [0.874930, 0.903514]):

11240005.arien.ics.muni.cz.R_urg11226212rnn_mlp etc.
[0.880240, 0.904192, 0.886228, 0.886228, ]

16x R_urg11226212rnn_rmsprop_mlp - 0.894087 (95% [0.888710, 0.899464]):

11240004.arien.ics.muni.cz.R_urg11226212rnn_rmsprop_mlp etc.
[0.892216, 0.898204, 0.892216, 0.892216, 0.910180, 0.892216, 0.886228, 0.898204, 0.892216, 0.886228, 0.874251, 0.904192, 0.904192, 0.904192, 0.904192, 0.874251, ]

4x R_urg11226219rnn_mlp - 0.880240 (95% [0.862413, 0.898066]):

11240500.arien.ics.muni.cz.R_urg11226219rnn_mlp etc.
[0.898204, 0.874251, 0.880240, 0.868263, ]

4x R_urg11226219rnn_rmsprop_mlp - 0.881737 (95% [0.873836, 0.889638]):

11240498.arien.ics.muni.cz.R_urg11226219rnn_rmsprop_mlp etc.
[0.886228, 0.880240, 0.886228, 0.874251, ]