-
Notifications
You must be signed in to change notification settings - Fork 6
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add an example to visualize the evolutuion of fitted parameters in bounded parameter space #43
Open
akapet00
wants to merge
3
commits into
brian-team:master
Choose a base branch
from
akapet00:error-evolution-example
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
from brian2 import * | ||
from brian2modelfitting import * | ||
import pandas as pd | ||
from matplotlib.animation import FuncAnimation | ||
|
||
|
||
# load data | ||
df_inp_traces = pd.read_csv('input_traces_hh.csv') | ||
df_out_traces = pd.read_csv('output_traces_hh.csv') | ||
inp_traces = df_inp_traces.to_numpy() | ||
inp_traces = inp_traces[:-1, 1:] | ||
out_traces = df_out_traces.to_numpy() | ||
out_traces = out_traces[:-1, 1:] | ||
|
||
# model parameters | ||
area = 20000. * umetre ** 2 | ||
Cm = 1. * ufarad * cm ** -2 * area | ||
E_l = -65. * mV | ||
E_k = -90. * mV | ||
E_na = 50. * mV | ||
Vt = -63. * mV | ||
init_v = {'v': -65. * mV} | ||
dt = 0.01 * ms | ||
defaultclock.dt = dt | ||
|
||
# model definition | ||
hodgkin_huxley = Equations( | ||
'''dv/dt = ( | ||
(g_l * (E_l - v) | ||
- g_na * (m ** 3) * h * (v - E_na) | ||
- g_k * (n ** 4) * (v - E_k) + I) / Cm) : volt | ||
dm/dt = ( | ||
0.32 * (mV ** -1 ) * (13.0 * mV - v + Vt) | ||
/ (exp((13.0 * mV - v + Vt) / (4.0 * mV)) - 1.0) / ms * (1 - m) | ||
- 0.28 * (mV ** -1) * (v - Vt - 40.0 * mV) | ||
/ (exp((v - Vt - 40.0 * mV) / (5.0 * mV)) - 1.0) / ms * m) : 1 | ||
dn/dt = ( | ||
0.032 * (mV ** -1) * (15.0 * mV - v + Vt) | ||
/ (exp((15.0 * mV - v + Vt) / (5.0 * mV)) - 1.0) / ms * (1.0 - n) | ||
- 0.5 * exp((10.0 * mV - v + Vt) / (40.0 * mV)) / ms * n) : 1 | ||
dh/dt = ( | ||
0.128 * exp((17.0 * mV - v + Vt) / (18.0 * mV)) / ms * (1.0 - h) | ||
- 4.0 / (1 + exp((40.0 * mV - v + Vt) / (5.0 * mV))) / ms * h) : 1 | ||
g_na : siemens (constant) | ||
g_k : siemens (constant) | ||
g_l : siemens (constant)''') | ||
|
||
# optimizer instantiation | ||
optimizer = NevergradOptimizer() | ||
|
||
# metric instantiation | ||
metric = MSEMetric() | ||
|
||
# fitter definition and fitting procedure | ||
n_samples = 40 | ||
fitter = TraceFitter( | ||
model=hodgkin_huxley, | ||
input_var='I', input=inp_traces * amp, | ||
output_var='v', output=out_traces * mV, | ||
dt=dt, | ||
n_samples=n_samples, | ||
method='exponential_euler', | ||
param_init=init_v) | ||
|
||
|
||
def callback(params, errors, best_params, best_error, index): | ||
"""Custom callback. | ||
|
||
Print the best error for each optimization round.""" | ||
print(f'[round {index + 1}]\tbest error: {np.min(errors)}') | ||
|
||
|
||
# fitting procedure | ||
n_rounds = 25 | ||
res, error = fitter.fit( | ||
optimizer=optimizer, | ||
metric=metric, | ||
n_rounds=n_rounds, | ||
callback=callback, | ||
g_l=[1.e-09 * siemens, 1.e-07 * siemens], | ||
g_na=[2.e-06 * siemens, 2.e-04 * siemens], | ||
g_k=[6.e-07 * siemens, 6.e-05 * siemens]) | ||
|
||
# visualization of best fitted traces | ||
fit_traces = fitter.generate_traces(params=res, param_init=init_v) | ||
|
||
nrows = 2 | ||
ncols = fit_traces.shape[0] | ||
fig, axs = plt.subplots( | ||
nrows=nrows, ncols=ncols, sharex=True, | ||
gridspec_kw={'height_ratios': [3, 1]}, figsize=(15, 4)) | ||
for idx in range(ncols): | ||
axs[0, idx].plot(out_traces[idx, :].T, 'k-', label='$V_m^{measured}(t)$') | ||
axs[0, idx].plot(fit_traces[idx, :].T / mV, 'r--', label='$V_m^{fit}(t)$') | ||
axs[1, idx].plot(inp_traces[idx, :].T / amp, 'k-', label='$I(t)$') | ||
axs[0, idx].grid() | ||
axs[1, idx].grid() | ||
axs[1, idx].set_xlabel('t [ms]') | ||
if idx == 0: | ||
axs[0, idx].set_ylabel('$V_m$ [mV]') | ||
axs[1, idx].set_ylabel('$I$ [A/cm$^2$]') | ||
handles, labels = [ | ||
(h + l) for h, l | ||
in zip(axs[0, idx].get_legend_handles_labels(), | ||
axs[1, idx].get_legend_handles_labels())] | ||
fig.legend(handles, labels, loc='upper right') | ||
plt.tight_layout() | ||
plt.show() | ||
|
||
# visualization of errors and parameters evolving over time | ||
full_output = fitter.results(format='dict', use_units=False) | ||
g_k = full_output['g_k'] | ||
g_na = full_output['g_na'] | ||
g_l = full_output['g_l'] | ||
error = full_output['error'] | ||
|
||
fig = plt.figure(figsize=(15, 5)) | ||
ax1 = fig.add_subplot(1, 2, 1, projection='3d') | ||
ax1.set(xlabel='$g_K$ [S]', ylabel='$g_{Na}$ [S]', zlabel='$g_l$ [S]', | ||
xlim=(0, g_k.max() * 1.01), ylim=(0, g_na.max() * 1.01), | ||
zlim=(0, g_l.max() * 1.01)) | ||
ax1.ticklabel_format(useOffset=True, style='scientific', scilimits=(0, 0)) | ||
ax2 = fig.add_subplot(1, 2, 2) | ||
ax2.set(xlabel='round', ylabel='error') | ||
ax2.grid() | ||
|
||
|
||
def init(): | ||
"""Scatter plot of the initial population of parameters and the | ||
best associated error.""" | ||
ax1.plot3D(g_k[:n_samples], g_na[:n_samples], g_l[:n_samples], | ||
'b*', markersize=4, label='init population') | ||
ax2.plot([0], np.min(error[:n_samples]), | ||
'b*', markersize=8, label='init best error') | ||
ax1.legend() | ||
ax2.legend() | ||
|
||
|
||
def animate(frame): | ||
"""Scatter plot current population of parameters for each frame, | ||
starting from the second round of optimization. | ||
|
||
Number of frames should correspond to the number of optimization | ||
rounds.""" | ||
istart = frame * n_samples | ||
iend = istart + n_samples | ||
if (res['g_k'] / siemens in g_k[istart:iend] | ||
and res['g_na'] / siemens in g_na[istart:iend] | ||
and res['g_l'] / siemens in g_l[istart:iend]): | ||
ax1.plot3D([res['g_k']], [res['g_na']], [res['g_l']], | ||
'r*', markersize=8, label='best params') | ||
ax2.plot(frame, np.min(error[istart:iend]), | ||
'r*', markersize=8, label='best error') | ||
ax1.legend() | ||
ax2.legend() | ||
else: | ||
ax1.plot3D(g_k[istart:iend], g_na[istart:iend], g_l[istart:iend], | ||
'ko', markersize=4, zorder=-1, alpha=0.3) | ||
ax2.plot(frame, np.min(error[istart:iend]), 'ko', | ||
markersize=4, zorder=-1) | ||
|
||
|
||
anim = FuncAnimation( | ||
fig, animate, init_func=init, frames=np.arange(1, n_rounds), repeat=False) | ||
plt.tight_layout() | ||
plt.show() |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think the
init
andanimate
function could use a short comment for those not familiar withFuncAnimation
.