Skip to content

Commit

Permalink
Merge pull request iNavFlight#9275 from sensei-hacker/plc_ops_renamed
Browse files Browse the repository at this point in the history
Programming Frameword.md: Update to match Configurator renaming
  • Loading branch information
DzikuVx authored Sep 3, 2023
2 parents 2ad57ad + 3c9c0cb commit 4b536f2
Showing 1 changed file with 15 additions and 15 deletions.
30 changes: 15 additions & 15 deletions docs/Programming Framework.md
Original file line number Diff line number Diff line change
Expand Up @@ -46,16 +46,16 @@ IPF can be edited using INAV Configurator user interface, or via CLI
| 10 | NAND | `false` if `Operand A` and `Operand B` are both `true`|
| 11 | NOR | `true` if `Operand A` and `Operand B` are both `false` |
| 12 | NOT | The boolean opposite to `Operand A` |
| 13 | STICKY | `Operand A` is the activation operator, `Operand B` is the deactivation operator. After the activation is `true`, the operator will return `true` until Operand B is evaluated as `true`|
| 14 | ADD | Add `Operand A` to `Operand B` and returns the result |
| 15 | SUB | Substract `Operand B` from `Operand A` and returns the result |
| 16 | MUL | Multiply `Operand A` by `Operand B` and returns the result |
| 17 | DIV | Divide `Operand A` by `Operand B` and returns the result |
| 18 | GVAR SET | Store value from `Operand B` into the Global Variable addressed by
| 13 | Sticky | `Operand A` is the activation operator, `Operand B` is the deactivation operator. After the activation is `true`, the operator will return `true` until Operand B is evaluated as `true`|
| 14 | Basic: Add | Add `Operand A` to `Operand B` and returns the result |
| 15 | Basic: Subtract | Substract `Operand B` from `Operand A` and returns the result |
| 16 | Basic: Multiply | Multiply `Operand A` by `Operand B` and returns the result |
| 17 | Basic: Divide | Divide `Operand A` by `Operand B` and returns the result |
| 18 | Set GVAR | Store value from `Operand B` into the Global Variable addressed by
`Operand A`. Bear in mind, that operand `Global Variable` means: Value stored in Global Variable of an index! To store in GVAR 1 use `Value 1` not `Global Variable 1` |
| 19 | GVAR INC | Increase the GVAR indexed by `Operand A` (use `Value 1` for Global Variable 1) with value from `Operand B` |
| 20 | GVAR DEC | Decrease the GVAR indexed by `Operand A` (use `Value 1` for Global Variable 1) with value from `Operand B` |
| 21 | IO PORT SET | Set I2C IO Expander pin `Operand A` to value of `Operand B`. `Operand A` accepts values `0-7` and `Operand B` accepts `0` and `1` |
| 19 | Increase GVAR | Increase the GVAR indexed by `Operand A` (use `Value 1` for Global Variable 1) with value from `Operand B` |
| 20 | Decrease GVAR | Decrease the GVAR indexed by `Operand A` (use `Value 1` for Global Variable 1) with value from `Operand B` |
| 21 | Set IO Port | Set I2C IO Expander pin `Operand A` to value of `Operand B`. `Operand A` accepts values `0-7` and `Operand B` accepts `0` and `1` |
| 22 | OVERRIDE_ARMING_SAFETY | Allows the craft to arm on any angle even without GPS fix. WARNING: This bypasses all safety checks, even that the throttle is low, so use with caution. If you only want to check for certain conditions, such as arm without GPS fix. You will need to add logic conditions to check the throttle is low. |
| 23 | OVERRIDE_THROTTLE_SCALE | Override throttle scale to the value defined by operand. Operand type `0` and value `50` means throttle will be scaled by 50%. |
| 24 | SWAP_ROLL_YAW | basically, when activated, yaw stick will control roll and roll stick will control yaw. Required for tail-sitters VTOL during vertical-horizonral transition when body frame changes |
Expand All @@ -67,18 +67,18 @@ IPF can be edited using INAV Configurator user interface, or via CLI
| 30 | SET_VTX_BAND | Sets VTX band. Accepted values are `1-5` |
| 31 | SET_VTX_CHANNEL | Sets VTX channel. Accepted values are `1-8` |
| 32 | SET_OSD_LAYOUT | Sets OSD layout. Accepted values are `0-3` |
| 33 | SIN | Computes SIN of `Operand A` value in degrees. Output is multiplied by `Operand B` value. If `Operand B` is `0`, result is multiplied by `500` |
| 34 | COS | Computes COS of `Operand A` value in degrees. Output is multiplied by `Operand B` value. If `Operand B` is `0`, result is multiplied by `500` |
| 35 | TAN | Computes TAN of `Operand A` value in degrees. Output is multiplied by `Operand B` value. If `Operand B` is `0`, result is multiplied by `500` |
| 33 | Trigonometry: Sine | Computes SIN of `Operand A` value in degrees. Output is multiplied by `Operand B` value. If `Operand B` is `0`, result is multiplied by `500` |
| 34 | Trigonometry: Cosine | Computes COS of `Operand A` value in degrees. Output is multiplied by `Operand B` value. If `Operand B` is `0`, result is multiplied by `500` |
| 35 | Trigonometry: Tangent | Computes TAN of `Operand A` value in degrees. Output is multiplied by `Operand B` value. If `Operand B` is `0`, result is multiplied by `500` |
| 36 | MAP_INPUT | Scales `Operand A` from [`0` : `Operand B`] to [`0` : `1000`]. Note: input will be constrained and then scaled |
| 37 | MAP_OUTPUT | Scales `Operand A` from [`0` : `1000`] to [`0` : `Operand B`]. Note: input will be constrained and then scaled |
| 38 | RC_CHANNEL_OVERRIDE | Overrides channel set by `Operand A` to value of `Operand B` |
| 39 | SET_HEADING_TARGET | Sets heading-hold target to `Operand A`, in degrees. Value wraps-around. |
| 40 | MOD | Modulo. Divide `Operand A` by `Operand B` and returns the remainder |
| 40 | Modulo | Modulo. Divide `Operand A` by `Operand B` and returns the remainder |
| 41 | LOITER_RADIUS_OVERRIDE | Sets the loiter radius to `Operand A` [`0` : `100000`] in cm. If the value is lower than the loiter radius set in the **Advanced Tuning**, that will be used. |
| 42 | SET_PROFILE | Sets the active config profile (PIDFF/Rates/Filters/etc) to `Operand A`. `Operand A` must be a valid profile number, currently from 1 to 3. If not, the profile will not change |
| 43 | MIN | Finds the lowest value of `Operand A` and `Operand B` |
| 44 | MAX | Finds the highest value of `Operand A` and `Operand B` |
| 43 | Use Lowest Value | Finds the lowest value of `Operand A` and `Operand B` |
| 44 | Use Highest Value | Finds the highest value of `Operand A` and `Operand B` |
| 45 | FLIGHT_AXIS_ANGLE_OVERRIDE | Sets the target attitude angle for axis. In other words, when active, it enforces Angle mode (Heading Hold for Yaw) on this axis (Angle mode does not have to be active). `Operand A` defines the axis: `0` - Roll, `1` - Pitch, `2` - Yaw. `Operand B` defines the angle in degrees |
| 46 | FLIGHT_AXIS_RATE_OVERRIDE | Sets the target rate (rotation speed) for axis. `Operand A` defines the axis: `0` - Roll, `1` - Pitch, `2` - Yaw. `Operand B` defines the rate in degrees per second |
| 47 | EDGE | Momentarily true when triggered by `Operand A`. `Operand A` is the activation operator [`boolean`], `Operand B` _(Optional)_ is the time for the edge to stay active [ms]. After activation, operator will return `true` until the time in Operand B is reached. If a pure momentary edge is wanted. Just leave `Operand B` as the default `Value: 0` setting. |
Expand Down

0 comments on commit 4b536f2

Please sign in to comment.