-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
277 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,277 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "767f05ef", | ||
"metadata": {}, | ||
"source": [ | ||
"## CMIP6 sea ice thickness bias" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "4dfe1c7f", | ||
"metadata": {}, | ||
"source": [ | ||
"## Import libraries" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "51de2ed2-daed-4360-9ec1-b14eacad4608", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import warnings\n", | ||
"\n", | ||
"import cartopy.crs as ccrs\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import pandas as pd\n", | ||
"import xarray as xr\n", | ||
"from c3s_eqc_automatic_quality_control import diagnostics, download, plot\n", | ||
"\n", | ||
"plt.style.use(\"seaborn-v0_8-notebook\")\n", | ||
"warnings.filterwarnings(\"ignore\", module=\"cf_xarray\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "8bc4ee9d", | ||
"metadata": {}, | ||
"source": [ | ||
"## Set parameters" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "c2fc4017-d3b8-4daf-8f20-effa7e7bc2b2", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"year_start = 2002\n", | ||
"year_stop = 2014\n", | ||
"assert year_start >= 2002 and year_stop <= 2014\n", | ||
"\n", | ||
"# Choose CMIP6 historical models\n", | ||
"models = [\n", | ||
" \"access_cm2\",\n", | ||
" \"access_esm1_5\",\n", | ||
" \"canesm5\",\n", | ||
" \"cmcc_cm2_sr5\",\n", | ||
" \"cmcc_esm2\",\n", | ||
" \"cnrm_cm6_1\",\n", | ||
" \"cnrm_cm6_1_hr\",\n", | ||
" \"cnrm_esm2_1\",\n", | ||
" \"e3sm_1_0\",\n", | ||
" \"e3sm_1_1\",\n", | ||
" \"e3sm_1_1_eca\",\n", | ||
" \"ec_earth3_aerchem\",\n", | ||
" \"ec_earth3_cc\",\n", | ||
" \"ec_earth3_veg_lr\",\n", | ||
" \"hadgem3_gc31_ll\",\n", | ||
" \"ipsl_cm5a2_inca\",\n", | ||
" \"ipsl_cm6a_lr\",\n", | ||
" \"miroc6\",\n", | ||
" \"miroc_es2l\",\n", | ||
" \"mpi_esm1_2_hr\",\n", | ||
" \"mpi_esm1_2_lr\",\n", | ||
" \"nesm3\",\n", | ||
" \"norcpm1\",\n", | ||
" # \"taiesm1\", # very large values\n", | ||
" \"ukesm1_0_ll\",\n", | ||
"]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "15f1a9a1", | ||
"metadata": {}, | ||
"source": [ | ||
"## Define request" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "4fab90a8-b9ad-4e86-a4dc-be51e749b6b7", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"months = [f\"{month:02d}\" for month in [1, 2, 3, 4, 10, 11, 12]]\n", | ||
"year_ranges = {\n", | ||
" \"envisat\": range(max(2002, year_start), min(2010, year_stop) + 1),\n", | ||
" \"cryosat_2\": range(max(2010, year_start), min(2020, year_stop) + 1),\n", | ||
"}\n", | ||
"collection_id_satellite = \"satellite-sea-ice-thickness\"\n", | ||
"request_satellite = {\n", | ||
" \"version\": \"2_0\",\n", | ||
" \"cdr_type\": \"cdr\",\n", | ||
" \"variable\": \"all\",\n", | ||
" \"month\": months,\n", | ||
"}\n", | ||
"\n", | ||
"collection_id_cmip6 = \"projections-cmip6\"\n", | ||
"request_cmip6 = {\n", | ||
" \"format\": \"zip\",\n", | ||
" \"temporal_resolution\": \"monthly\",\n", | ||
" \"experiment\": \"historical\",\n", | ||
" \"variable\": \"sea_ice_thickness\",\n", | ||
" \"month\": months,\n", | ||
"}\n", | ||
"\n", | ||
"chunks = {\"year\": 1}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "2b1b4a55", | ||
"metadata": {}, | ||
"source": [ | ||
"## Define function to cache" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "d1c76126-b244-48d1-86b7-21310a695647", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def regridded_time_weighted_mean(ds, times, **kwargs):\n", | ||
" ds_sat = download.download_and_transform(\n", | ||
" \"satellite-sea-ice-thickness\",\n", | ||
" {\n", | ||
" \"satellite\": \"envisat\",\n", | ||
" \"version\": \"2_0\",\n", | ||
" \"cdr_type\": \"cdr\",\n", | ||
" \"variable\": \"all\",\n", | ||
" \"year\": \"2002\",\n", | ||
" \"month\": [f\"{month:02d}\" for month in [1, 2, 3, 4, 10, 11, 12]],\n", | ||
" },\n", | ||
" chunks={\"year\": 1},\n", | ||
" )\n", | ||
" ds[\"time\"] = pd.to_datetime(ds[\"time\"].dt.strftime(\"%Y-%m\"))\n", | ||
" ds[\"time\"].attrs[\"standard_name\"] = \"time\"\n", | ||
" ds = ds.sel(time=times)\n", | ||
" ds = diagnostics.time_weighted_mean(ds)\n", | ||
" return diagnostics.regrid(ds, ds_sat[[\"latitude\", \"longitude\"]], **kwargs)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "1591e857", | ||
"metadata": {}, | ||
"source": [ | ||
"## Download and transform" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "fe14c6bc-da5d-4cdf-864f-26acc1ceb4dd", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"datasets_satellites = []\n", | ||
"datasets_cmip6 = []\n", | ||
"for satellite, year_range in year_ranges.items():\n", | ||
" print(f\"{satellite=}\")\n", | ||
" years = list(map(str, year_range))\n", | ||
" ds = download.download_and_transform(\n", | ||
" collection_id_satellite,\n", | ||
" request_satellite | {\"satellite\": satellite, \"year\": years},\n", | ||
" chunks=chunks,\n", | ||
" )\n", | ||
" times = ds[\"time\"].dt.strftime(\"%Y-%m\").values.tolist()\n", | ||
" ds = diagnostics.time_weighted_mean(ds)\n", | ||
" datasets_satellites.append(\n", | ||
" ds.expand_dims(satellite=[satellite], product=[\"satellite\"])\n", | ||
" )\n", | ||
"\n", | ||
" model_datasets = []\n", | ||
" for model in models:\n", | ||
" print(f\"{satellite=} {model=}\")\n", | ||
" ds = download.download_and_transform(\n", | ||
" collection_id_cmip6,\n", | ||
" request_cmip6 | {\"model\": model, \"year\": years},\n", | ||
" chunks=chunks,\n", | ||
" transform_chunks=False,\n", | ||
" transform_func=regridded_time_weighted_mean,\n", | ||
" transform_func_kwargs={\n", | ||
" \"times\": times,\n", | ||
" \"method\": \"nearest_s2d\",\n", | ||
" \"periodic\": True,\n", | ||
" \"ignore_degenerate\": True,\n", | ||
" },\n", | ||
" )\n", | ||
" model_datasets.append(\n", | ||
" ds.expand_dims(model=[model], satellite=[satellite], product=[\"cmip6\"])\n", | ||
" )\n", | ||
" datasets_cmip6.append(\n", | ||
" xr.concat(model_datasets, \"model\").mean(\"model\", keep_attrs=True)\n", | ||
" )\n", | ||
"ds_satellites = xr.concat(datasets_satellites, \"satellite\")\n", | ||
"ds_cmip6 = xr.concat(datasets_cmip6, \"satellite\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "cec1f783", | ||
"metadata": {}, | ||
"source": [ | ||
"## Plot maps" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "d97f2e93-a02e-4bad-b5ce-061f0e20f994", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"projection = ccrs.Stereographic(central_latitude=90)\n", | ||
"\n", | ||
"biases = []\n", | ||
"for satellite, ds_satellite in ds_satellites.groupby(\"satellite\"):\n", | ||
" da_satellite = ds_satellite[\"sea_ice_thickness\"]\n", | ||
" da_cmip6 = ds_cmip6.sel(satellite=[satellite])[\"sithick\"]\n", | ||
" da = xr.concat([da_satellite, da_cmip6], \"product\")\n", | ||
" facet = plot.projected_map(\n", | ||
" da, col=\"product\", vmin=0, robust=True, projection=projection\n", | ||
" )\n", | ||
" facet.fig.suptitle(satellite, y=1.05)\n", | ||
"\n", | ||
" with xr.set_options(keep_attrs=True):\n", | ||
" bias = da_cmip6.squeeze(\"product\") - da_satellite.squeeze(\"product\")\n", | ||
" bias.attrs[\"long_name\"] = \"Bias of \" + bias.attrs[\"long_name\"]\n", | ||
" biases.append(bias)\n", | ||
"\n", | ||
"bias = xr.concat(biases, \"satellite\")\n", | ||
"plot.projected_map(bias, col=\"satellite\", projection=projection, robust=True)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.7" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |