-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
292 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,292 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "0", | ||
"metadata": {}, | ||
"source": [ | ||
"# Monitor climate change over Europe with land reanalysis data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "1", | ||
"metadata": {}, | ||
"source": [ | ||
"## Import libraries" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "2", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import cartopy.crs as ccrs\n", | ||
"import fsspec\n", | ||
"import geopandas as gpd\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import numpy as np\n", | ||
"import pandas as pd\n", | ||
"import pymannkendall as mk\n", | ||
"import shapely.geometry\n", | ||
"import xarray as xr\n", | ||
"from c3s_eqc_automatic_quality_control import diagnostics, download, plot\n", | ||
"\n", | ||
"plt.style.use(\"seaborn-v0_8-notebook\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "3", | ||
"metadata": {}, | ||
"source": [ | ||
"## Set parameters" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "4", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Time\n", | ||
"year_start = 1997\n", | ||
"year_stop = 2022\n", | ||
"\n", | ||
"# External files\n", | ||
"shapefile_url = \"https://www.eea.europa.eu/data-and-maps/data/eea-reference-grids-2/gis-files/spain-shapefile/at_download/file\"\n", | ||
"observed_csv = (\n", | ||
" \"observed-annual-average-mean-surface-air-temperature-of-spain-for-1901-2022.csv\"\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "5", | ||
"metadata": {}, | ||
"source": [ | ||
"## Set request" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "6", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"collection_id = \"reanalysis-era5-land-monthly-means\"\n", | ||
"request = {\n", | ||
" \"product_type\": \"monthly_averaged_reanalysis\",\n", | ||
" \"variable\": \"2m_temperature\",\n", | ||
" \"year\": [str(year) for year in range(year_start, year_stop + 1)],\n", | ||
" \"month\": [f\"{month:02d}\" for month in range(1, 12 + 1)],\n", | ||
" \"time\": \"00:00\",\n", | ||
" \"area\": [44, -10, 36, 0],\n", | ||
"}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "7", | ||
"metadata": {}, | ||
"source": [ | ||
"## Download data and convert to Celsius" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "8", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"ds = download.download_and_transform(collection_id, request, chunks={\"year\": 1})\n", | ||
"da = ds[\"t2m\"]\n", | ||
"with xr.set_options(keep_attrs=True):\n", | ||
" da -= 273.15\n", | ||
"da.attrs[\"units\"] = \"°C\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "9", | ||
"metadata": {}, | ||
"source": [ | ||
"## Select and cut Spain map" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "10", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def clip_shapefile(data, shapefile_url):\n", | ||
" shapefile_crs = \"EPSG:4326\"\n", | ||
" with fsspec.open(f\"simplecache::{shapefile_url}\") as file:\n", | ||
" gdf = gpd.read_file(file, layer=\"es_100km\").to_crs(shapefile_crs)\n", | ||
"\n", | ||
" data = data.rio.set_spatial_dims(x_dim=\"longitude\", y_dim=\"latitude\")\n", | ||
" data = data.rio.write_crs(shapefile_crs)\n", | ||
" data_clip = data.rio.clip(\n", | ||
" gdf.geometry.apply(shapely.geometry.mapping), gdf.crs, drop=False\n", | ||
" )\n", | ||
" return data_clip\n", | ||
"\n", | ||
"\n", | ||
"da = clip_shapefile(da, shapefile_url)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "11", | ||
"metadata": {}, | ||
"source": [ | ||
"## Plot annual mean" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "12", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"da_time_mean = diagnostics.time_weighted_mean(da)\n", | ||
"plot.projected_map(\n", | ||
" da_time_mean.where(da_time_mean), projection=ccrs.PlateCarree(), cmap=\"YlOrRd\"\n", | ||
")\n", | ||
"_ = plt.title(\"\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "13", | ||
"metadata": {}, | ||
"source": [ | ||
"## Plot annual spatial mean" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "14", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"da_spatial_mean = diagnostics.spatial_weighted_mean(da)\n", | ||
"da_annual_mean = diagnostics.annual_weighted_mean(da_spatial_mean)\n", | ||
"trend, h, p, z, tau, s, var_s, slope, intercept = mk.original_test(da_annual_mean)\n", | ||
"\n", | ||
"# Plot bars\n", | ||
"ax = da_annual_mean.to_pandas().plot.bar()\n", | ||
"ax.set_ylabel(f\"{da_annual_mean.attrs['long_name']} [{da_annual_mean.attrs['units']}]\")\n", | ||
"ax.bar_label(ax.containers[0], rotation=90, fmt=\"%.2f\", padding=2.5)\n", | ||
"plt.show()\n", | ||
"\n", | ||
"# Plot lines\n", | ||
"da_annual_mean.plot(label=\"Data\")\n", | ||
"plt.plot(\n", | ||
" da_annual_mean[\"year\"],\n", | ||
" np.arange(da_annual_mean.sizes[\"year\"]) * slope + intercept,\n", | ||
" label=\"Trend Line\",\n", | ||
")\n", | ||
"plt.legend()\n", | ||
"plt.grid()\n", | ||
"plt.title(\"Annual mean\")\n", | ||
"plt.show()\n", | ||
"\n", | ||
"# Print significance\n", | ||
"is_significant = p < 0.05\n", | ||
"print(f\"The trend is{'' if is_significant else ' NOT'} significant.\")\n", | ||
"print(f\"Trend: {slope:f} {da_annual_mean.attrs['units']}/year\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "15", | ||
"metadata": {}, | ||
"source": [ | ||
"## Comparison with in-situ data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "16", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Read the CSV file into a DataFrame\n", | ||
"observed = pd.read_csv(observed_csv)\n", | ||
"mask = (observed[\"Category\"] >= year_start) & (observed[\"Category\"] <= year_stop)\n", | ||
"observed = observed[mask]\n", | ||
"\n", | ||
"# Trend and significance\n", | ||
"trend, h, p, z, tau, s, var_s, slope, intercept = mk.original_test(\n", | ||
" observed[\"Annual Mean\"]\n", | ||
")\n", | ||
"is_significant = p < 0.05\n", | ||
"print(f\"The observed trend is{'' if is_significant else ' NOT'} significant.\")\n", | ||
"print(f\"Trend: {slope:f} {da_annual_mean.attrs['units']}/year\")\n", | ||
"\n", | ||
"# bias\n", | ||
"bias = np.mean(np.array(da_annual_mean - observed[\"Annual Mean\"]))\n", | ||
"print(f\"Bias: {bias} {da_annual_mean.attrs['units']}/year\")\n", | ||
"\n", | ||
"# Plot the first line\n", | ||
"plt.plot(\n", | ||
" observed[\"Category\"],\n", | ||
" observed[\"Annual Mean\"],\n", | ||
" label=\"In-situ temperature\",\n", | ||
" color=\"blue\",\n", | ||
" marker=\"o\",\n", | ||
")\n", | ||
"\n", | ||
"# Plot the second line\n", | ||
"plt.plot(\n", | ||
" da_annual_mean[\"year\"],\n", | ||
" da_annual_mean,\n", | ||
" label=\"ERA5 land temperature \",\n", | ||
" color=\"red\",\n", | ||
" marker=\"x\",\n", | ||
")\n", | ||
"\n", | ||
"# Add labels and title\n", | ||
"plt.xlabel(\"Year\")\n", | ||
"plt.ylabel(\"Temperature(°C)\")\n", | ||
"plt.title(\" Annual temperature from ERA5-Land and in-situ temperature\")\n", | ||
"\n", | ||
"# Add legend\n", | ||
"plt.legend()\n", | ||
"plt.grid()" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.9" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |