-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
229 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,229 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "d2078cb1", | ||
"metadata": {}, | ||
"source": [ | ||
"# Ocean color reflectance" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "25f9797c", | ||
"metadata": {}, | ||
"source": [ | ||
"## Import packages" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7b0ba8de-66d3-4280-b486-ea3bafa4ae28", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import tempfile\n", | ||
"\n", | ||
"import cartopy.crs as ccrs\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import numpy as np\n", | ||
"import xarray as xr\n", | ||
"from c3s_eqc_automatic_quality_control import diagnostics, download, plot, utils\n", | ||
"\n", | ||
"plt.style.use(\"seaborn-v0_8-notebook\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "20d3c6af", | ||
"metadata": {}, | ||
"source": [ | ||
"## Define Parameters" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a0061522-8772-42d4-8f1a-f6bbdb03ad25", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Time period\n", | ||
"year_start = 1998\n", | ||
"year_stop = 1999\n", | ||
"\n", | ||
"# Variable to analyse\n", | ||
"wavelength = 443\n", | ||
"assert wavelength in (412, 443, 490, 510, 560, 665)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "42726c21", | ||
"metadata": {}, | ||
"source": [ | ||
"## Define request" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "382c1767-9a60-4db1-8791-fc5f65887d10", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"collection_id = \"satellite-ocean-colour\"\n", | ||
"\n", | ||
"request = {\n", | ||
" \"variable\": \"remote_sensing_reflectance\",\n", | ||
" \"projection\": \"regular_latitude_longitude_grid\",\n", | ||
" \"version\": \"6_0\",\n", | ||
" \"format\": \"zip\",\n", | ||
"}\n", | ||
"\n", | ||
"# Parameters to speed up I/O\n", | ||
"open_mfdataset_kwargs = {\n", | ||
" \"concat_dim\": \"time\",\n", | ||
" \"combine\": \"nested\",\n", | ||
" \"data_vars\": \"minimal\",\n", | ||
" \"coords\": \"minimal\",\n", | ||
" \"compat\": \"override\",\n", | ||
" \"parallel\": True,\n", | ||
"}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "1dce537a-7786-4472-9e99-11c25236f5b3", | ||
"metadata": {}, | ||
"source": [ | ||
"## Functions to cache" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "5e9c43b1-48ef-4a00-90cf-d062cb59c9af", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def rechunk(obj):\n", | ||
" chunks = {\"time\": -1, \"year\": 1, \"longitude\": 270, \"latitude\": 270}\n", | ||
" return obj.chunk(**{k: v for k, v in chunks.items() if k in obj.dims})\n", | ||
"\n", | ||
"\n", | ||
"def rrs_annual_weighted_log_mean(ds, wavelength):\n", | ||
" name = f\"Rrs_{wavelength}\"\n", | ||
" da = rechunk(ds[name])\n", | ||
" with tempfile.TemporaryDirectory() as tmpdir:\n", | ||
" da.to_zarr(tmpdir)\n", | ||
" da = xr.open_dataarray(tmpdir, engine=\"zarr\", chunks=dict(da.chunksizes))\n", | ||
" weights = np.abs(np.cos(np.deg2rad(da[\"latitude\"])))\n", | ||
" with xr.set_options(keep_attrs=True):\n", | ||
" da = 10 ** diagnostics.annual_weighted_mean(\n", | ||
" np.log10(da * weights), weights=False\n", | ||
" )\n", | ||
" da = rechunk(da.compute())\n", | ||
" da.encoding[\"chunksizes\"] = tuple(map(max, da.chunks))\n", | ||
" return da.to_dataset(name=name)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "3d8a7b28", | ||
"metadata": {}, | ||
"source": [ | ||
"## Download and transform data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "8cb75234-f402-4ce7-9585-4192ea1b2fb5", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"datasets = []\n", | ||
"for year in range(year_start, year_stop + 1):\n", | ||
" print(f\"{year=}\")\n", | ||
" requests = download.update_request_date(\n", | ||
" request, start=f\"{year}-01\", stop=f\"{year}-12\", stringify_dates=True\n", | ||
" )\n", | ||
" ds = download.download_and_transform(\n", | ||
" collection_id,\n", | ||
" requests,\n", | ||
" transform_chunks=False,\n", | ||
" transform_func=rrs_annual_weighted_log_mean,\n", | ||
" transform_func_kwargs={\"wavelength\": wavelength},\n", | ||
" chunks={\"year\": 1, \"month\": 1},\n", | ||
" **open_mfdataset_kwargs,\n", | ||
" )\n", | ||
" datasets.append(rechunk(ds))\n", | ||
"ds = xr.concat(datasets, \"year\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "94b4fe5c-2eae-4847-bb17-66fbd531b522", | ||
"metadata": {}, | ||
"source": [ | ||
"## Plot global maps" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "afd7484e-f23a-4558-83ad-779504e68c8d", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"da = ds[f\"Rrs_{wavelength}\"]\n", | ||
"plot_kwargs = {\"col\": \"year\", \"col_wrap\": 2, \"robust\": True}\n", | ||
"\n", | ||
"da = da.coarsen(latitude=5, longitude=5).mean()\n", | ||
"facet = plot.projected_map(da, projection=ccrs.Robinson(), **plot_kwargs)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "1a4a6b69-cca8-4b7f-84ba-a724909db848", | ||
"metadata": {}, | ||
"source": [ | ||
"## Plot regional maps" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "9a030fe6-6cf4-4f65-914a-fdb70ee1d943", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"da_region = utils.regionalise(da, lon_slice=slice(-55, -40), lat_slice=slice(30, 15))\n", | ||
"facet = plot.projected_map(da_region, projection=ccrs.PlateCarree(), **plot_kwargs)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.12" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |