Skip to content

boenkemeyer/onnxruntime-genai

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ONNX Runtime generate() API

Latest version

Run Llama, Phi, Gemma, Mistral with ONNX Runtime.

This API gives you an easy, flexible and performant way of running LLMs on device.

It implements the generative AI loop for ONNX models, including pre and post processing, inference with ONNX Runtime, logits processing, search and sampling, and KV cache management.

You can call a high level generate() method to generate all of the output at once, or stream the output one token at a time.

See documentation at https://onnxruntime.ai/docs/genai.

Support matrix Supported now Under development On the roadmap
Model architectures Gemma
Llama *
Mistral +
Phi
Whisper Stable diffusion
API Python
C#
C/C++
Java Objective-C
Platform Linux
Windows
Android Mac
iOS
Architecture x86
x64
Arm64
Hardware Acceleration CUDA
DirectML
QNN
ROCm
OpenVINO

* The Llama model architecture supports similar model families such as CodeLlama, Vicuna, Yi, and more.

+ The Mistral model architecture supports similar model families such as Zephyr.

Installation

See https://onnxruntime.ai/docs/genai/howto/install

Sample code for Phi-3 in Python

  1. Download the model

    huggingface-cli download microsoft/Phi-3-mini-4k-instruct-onnx --include cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/* --local-dir .
  2. Install the API

    pip install numpy
    pip install --pre onnxruntime-genai
  3. Run the model

    import onnxruntime_genai as og
    
    model = og.Model('cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4')
    tokenizer = og.Tokenizer(model)
    tokenizer_stream = tokenizer.create_stream()
     
    # Set the max length to something sensible by default,
    # since otherwise it will be set to the entire context length
    search_options = {}
    search_options['max_length'] = 2048
    
    chat_template = '<|user|>\n{input} <|end|>\n<|assistant|>'
    
    text = input("Input: ")
    if not text:
       print("Error, input cannot be empty")
       exit
    
    prompt = f'{chat_template.format(input=text)}'
    
    input_tokens = tokenizer.encode(prompt)
    
    params = og.GeneratorParams(model)
    params.set_search_options(**search_options)
    params.input_ids = input_tokens
    generator = og.Generator(model, params)
    
    print("Output: ", end='', flush=True)
    
    try:
       while not generator.is_done():
         generator.compute_logits()
         generator.generate_next_token()
    
         new_token = generator.get_next_tokens()[0]
         print(tokenizer_stream.decode(new_token), end='', flush=True)
    except KeyboardInterrupt:
        print("  --control+c pressed, aborting generation--")
    
    print()
    del generator

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

About

Generative AI extensions for onnxruntime

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 57.0%
  • Python 18.8%
  • C 8.2%
  • Cuda 7.3%
  • C# 5.7%
  • CMake 2.1%
  • Other 0.9%