This is a tutorial project. The aim is to fit a ML model for a dataset from kaggle. Then, build a simple streamlit app on top of it.
- Download and install
git
from here: https://git-scm.com/downloads/win
git clone https://github.com/bmotevalli/melbourne-realestate.git
cd melbourne-realestate
python -m venv .venv
.venv\Scripts\activate
pip install -r requirements.txt
Download the data for this project from below:
https://www.kaggle.com/datasets/dansbecker/melbourne-housing-snapshot
Locate the data in a subfolder data
.
pip install ipykernel
python -m ipykernel install --user --name=mel-realestate --display-name "mel-realestate"
WinOS:
- Powershell
$env:PYTHONPATH = "C:\path\to\your_project"
- CMD
set PYTHONPATH=C:\path\to\your_project
macOS/Linux:
export PYTHONPATH="/path/to/your_project"
streamlit run app\views\main.py --server.runOnSave=true