forked from alexforencich/verilog-axi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaxil_interconnect.v
517 lines (456 loc) · 21.4 KB
/
axil_interconnect.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 lite interconnect
*/
module axil_interconnect #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Width of data bus in bits
parameter DATA_WIDTH = 32,
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of wstrb (width of data bus in words)
parameter STRB_WIDTH = (DATA_WIDTH/8),
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_WIDTH bits
// set to zero for default addressing based on M_ADDR_WIDTH
parameter M_BASE_ADDR = 0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_WIDTH = {M_COUNT{{M_REGIONS{32'd24}}}},
// Read connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT_READ = {M_COUNT{{S_COUNT{1'b1}}}},
// Write connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT_WRITE = {M_COUNT{{S_COUNT{1'b1}}}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}}
)
(
input wire clk,
input wire rst,
/*
* AXI lite slave interfaces
*/
input wire [S_COUNT*ADDR_WIDTH-1:0] s_axil_awaddr,
input wire [S_COUNT*3-1:0] s_axil_awprot,
input wire [S_COUNT-1:0] s_axil_awvalid,
output wire [S_COUNT-1:0] s_axil_awready,
input wire [S_COUNT*DATA_WIDTH-1:0] s_axil_wdata,
input wire [S_COUNT*STRB_WIDTH-1:0] s_axil_wstrb,
input wire [S_COUNT-1:0] s_axil_wvalid,
output wire [S_COUNT-1:0] s_axil_wready,
output wire [S_COUNT*2-1:0] s_axil_bresp,
output wire [S_COUNT-1:0] s_axil_bvalid,
input wire [S_COUNT-1:0] s_axil_bready,
input wire [S_COUNT*ADDR_WIDTH-1:0] s_axil_araddr,
input wire [S_COUNT*3-1:0] s_axil_arprot,
input wire [S_COUNT-1:0] s_axil_arvalid,
output wire [S_COUNT-1:0] s_axil_arready,
output wire [S_COUNT*DATA_WIDTH-1:0] s_axil_rdata,
output wire [S_COUNT*2-1:0] s_axil_rresp,
output wire [S_COUNT-1:0] s_axil_rvalid,
input wire [S_COUNT-1:0] s_axil_rready,
/*
* AXI lite master interfaces
*/
output wire [M_COUNT*ADDR_WIDTH-1:0] m_axil_awaddr,
output wire [M_COUNT*3-1:0] m_axil_awprot,
output wire [M_COUNT-1:0] m_axil_awvalid,
input wire [M_COUNT-1:0] m_axil_awready,
output wire [M_COUNT*DATA_WIDTH-1:0] m_axil_wdata,
output wire [M_COUNT*STRB_WIDTH-1:0] m_axil_wstrb,
output wire [M_COUNT-1:0] m_axil_wvalid,
input wire [M_COUNT-1:0] m_axil_wready,
input wire [M_COUNT*2-1:0] m_axil_bresp,
input wire [M_COUNT-1:0] m_axil_bvalid,
output wire [M_COUNT-1:0] m_axil_bready,
output wire [M_COUNT*ADDR_WIDTH-1:0] m_axil_araddr,
output wire [M_COUNT*3-1:0] m_axil_arprot,
output wire [M_COUNT-1:0] m_axil_arvalid,
input wire [M_COUNT-1:0] m_axil_arready,
input wire [M_COUNT*DATA_WIDTH-1:0] m_axil_rdata,
input wire [M_COUNT*2-1:0] m_axil_rresp,
input wire [M_COUNT-1:0] m_axil_rvalid,
output wire [M_COUNT-1:0] m_axil_rready
);
parameter CL_S_COUNT = $clog2(S_COUNT);
parameter CL_M_COUNT = $clog2(M_COUNT);
// default address computation
function [M_COUNT*M_REGIONS*ADDR_WIDTH-1:0] calcBaseAddrs(input [31:0] dummy);
integer i;
reg [ADDR_WIDTH-1:0] base;
begin
calcBaseAddrs = {M_COUNT*M_REGIONS*ADDR_WIDTH{1'b0}};
base = 0;
for (i = 1; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_WIDTH[i*32 +: 32]) begin
base = base + 2**M_ADDR_WIDTH[(i-1)*32 +: 32]; // increment
base = base - (base % 2**M_ADDR_WIDTH[i*32 +: 32]); // align
calcBaseAddrs[i * ADDR_WIDTH +: ADDR_WIDTH] = base;
end
end
end
endfunction
parameter M_BASE_ADDR_INT = M_BASE_ADDR ? M_BASE_ADDR : calcBaseAddrs(0);
integer i, j;
// check configuration
initial begin
for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_WIDTH[i*32 +: 32] && (M_ADDR_WIDTH[i*32 +: 32] < 0 || M_ADDR_WIDTH[i*32 +: 32] > ADDR_WIDTH)) begin
$error("Error: address width out of range (instance %m)");
$finish;
end
end
$display("Addressing configuration for axil_interconnect instance %m");
for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_WIDTH[i*32 +: 32]) begin
$display("%2d (%2d): %x / %2d -- %x-%x", i/M_REGIONS, i%M_REGIONS, M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH], M_ADDR_WIDTH[i*32 +: 32], M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[i*32 +: 32]), M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[i*32 +: 32])));
end
end
for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
for (j = i+1; j < M_COUNT*M_REGIONS; j = j + 1) begin
if (M_ADDR_WIDTH[i*32 +: 32] && M_ADDR_WIDTH[j*32 +: 32]) begin
if (((M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[i*32 +: 32])) <= (M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[j*32 +: 32])))) && ((M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[j*32 +: 32])) <= (M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[i*32 +: 32]))))) begin
$display("Overlapping regions:");
$display("%2d (%2d): %x / %2d -- %x-%x", i/M_REGIONS, i%M_REGIONS, M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH], M_ADDR_WIDTH[i*32 +: 32], M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[i*32 +: 32]), M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[i*32 +: 32])));
$display("%2d (%2d): %x / %2d -- %x-%x", j/M_REGIONS, j%M_REGIONS, M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH], M_ADDR_WIDTH[j*32 +: 32], M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[j*32 +: 32]), M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[j*32 +: 32])));
$error("Error: address ranges overlap (instance %m)");
$finish;
end
end
end
end
end
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_DECODE = 3'd1,
STATE_WRITE = 3'd2,
STATE_WRITE_RESP = 3'd3,
STATE_WRITE_DROP = 3'd4,
STATE_READ = 3'd5,
STATE_WAIT_IDLE = 3'd6;
reg [2:0] state_reg = STATE_IDLE, state_next;
reg match;
reg [CL_M_COUNT-1:0] m_select_reg = 2'd0, m_select_next;
reg [ADDR_WIDTH-1:0] axil_addr_reg = {ADDR_WIDTH{1'b0}}, axil_addr_next;
reg axil_addr_valid_reg = 1'b0, axil_addr_valid_next;
reg [2:0] axil_prot_reg = 3'b000, axil_prot_next;
reg [DATA_WIDTH-1:0] axil_data_reg = {DATA_WIDTH{1'b0}}, axil_data_next;
reg [STRB_WIDTH-1:0] axil_wstrb_reg = {STRB_WIDTH{1'b0}}, axil_wstrb_next;
reg [1:0] axil_resp_reg = 2'b00, axil_resp_next;
reg [S_COUNT-1:0] s_axil_awready_reg = 0, s_axil_awready_next;
reg [S_COUNT-1:0] s_axil_wready_reg = 0, s_axil_wready_next;
reg [S_COUNT-1:0] s_axil_bvalid_reg = 0, s_axil_bvalid_next;
reg [S_COUNT-1:0] s_axil_arready_reg = 0, s_axil_arready_next;
reg [S_COUNT-1:0] s_axil_rvalid_reg = 0, s_axil_rvalid_next;
reg [M_COUNT-1:0] m_axil_awvalid_reg = 0, m_axil_awvalid_next;
reg [M_COUNT-1:0] m_axil_wvalid_reg = 0, m_axil_wvalid_next;
reg [M_COUNT-1:0] m_axil_bready_reg = 0, m_axil_bready_next;
reg [M_COUNT-1:0] m_axil_arvalid_reg = 0, m_axil_arvalid_next;
reg [M_COUNT-1:0] m_axil_rready_reg = 0, m_axil_rready_next;
assign s_axil_awready = s_axil_awready_reg;
assign s_axil_wready = s_axil_wready_reg;
assign s_axil_bresp = {S_COUNT{axil_resp_reg}};
assign s_axil_bvalid = s_axil_bvalid_reg;
assign s_axil_arready = s_axil_arready_reg;
assign s_axil_rdata = {S_COUNT{axil_data_reg}};
assign s_axil_rresp = {S_COUNT{axil_resp_reg}};
assign s_axil_rvalid = s_axil_rvalid_reg;
assign m_axil_awaddr = {M_COUNT{axil_addr_reg}};
assign m_axil_awprot = {M_COUNT{axil_prot_reg}};
assign m_axil_awvalid = m_axil_awvalid_reg;
assign m_axil_wdata = {M_COUNT{axil_data_reg}};
assign m_axil_wstrb = {M_COUNT{axil_wstrb_reg}};
assign m_axil_wvalid = m_axil_wvalid_reg;
assign m_axil_bready = m_axil_bready_reg;
assign m_axil_araddr = {M_COUNT{axil_addr_reg}};
assign m_axil_arprot = {M_COUNT{axil_prot_reg}};
assign m_axil_arvalid = m_axil_arvalid_reg;
assign m_axil_rready = m_axil_rready_reg;
// slave side mux
wire [(CL_S_COUNT > 0 ? CL_S_COUNT-1 : 0):0] s_select;
wire [ADDR_WIDTH-1:0] current_s_axil_awaddr = s_axil_awaddr[s_select*ADDR_WIDTH +: ADDR_WIDTH];
wire [2:0] current_s_axil_awprot = s_axil_awprot[s_select*3 +: 3];
wire current_s_axil_awvalid = s_axil_awvalid[s_select];
wire current_s_axil_awready = s_axil_awready[s_select];
wire [DATA_WIDTH-1:0] current_s_axil_wdata = s_axil_wdata[s_select*DATA_WIDTH +: DATA_WIDTH];
wire [STRB_WIDTH-1:0] current_s_axil_wstrb = s_axil_wstrb[s_select*STRB_WIDTH +: STRB_WIDTH];
wire current_s_axil_wvalid = s_axil_wvalid[s_select];
wire current_s_axil_wready = s_axil_wready[s_select];
wire [1:0] current_s_axil_bresp = s_axil_bresp[s_select*2 +: 2];
wire current_s_axil_bvalid = s_axil_bvalid[s_select];
wire current_s_axil_bready = s_axil_bready[s_select];
wire [ADDR_WIDTH-1:0] current_s_axil_araddr = s_axil_araddr[s_select*ADDR_WIDTH +: ADDR_WIDTH];
wire [2:0] current_s_axil_arprot = s_axil_arprot[s_select*3 +: 3];
wire current_s_axil_arvalid = s_axil_arvalid[s_select];
wire current_s_axil_arready = s_axil_arready[s_select];
wire [DATA_WIDTH-1:0] current_s_axil_rdata = s_axil_rdata[s_select*DATA_WIDTH +: DATA_WIDTH];
wire [1:0] current_s_axil_rresp = s_axil_rresp[s_select*2 +: 2];
wire current_s_axil_rvalid = s_axil_rvalid[s_select];
wire current_s_axil_rready = s_axil_rready[s_select];
// master side mux
wire [ADDR_WIDTH-1:0] current_m_axil_awaddr = m_axil_awaddr[m_select_reg*ADDR_WIDTH +: ADDR_WIDTH];
wire [2:0] current_m_axil_awprot = m_axil_awprot[m_select_reg*3 +: 3];
wire current_m_axil_awvalid = m_axil_awvalid[m_select_reg];
wire current_m_axil_awready = m_axil_awready[m_select_reg];
wire [DATA_WIDTH-1:0] current_m_axil_wdata = m_axil_wdata[m_select_reg*DATA_WIDTH +: DATA_WIDTH];
wire [STRB_WIDTH-1:0] current_m_axil_wstrb = m_axil_wstrb[m_select_reg*STRB_WIDTH +: STRB_WIDTH];
wire current_m_axil_wvalid = m_axil_wvalid[m_select_reg];
wire current_m_axil_wready = m_axil_wready[m_select_reg];
wire [1:0] current_m_axil_bresp = m_axil_bresp[m_select_reg*2 +: 2];
wire current_m_axil_bvalid = m_axil_bvalid[m_select_reg];
wire current_m_axil_bready = m_axil_bready[m_select_reg];
wire [ADDR_WIDTH-1:0] current_m_axil_araddr = m_axil_araddr[m_select_reg*ADDR_WIDTH +: ADDR_WIDTH];
wire [2:0] current_m_axil_arprot = m_axil_arprot[m_select_reg*3 +: 3];
wire current_m_axil_arvalid = m_axil_arvalid[m_select_reg];
wire current_m_axil_arready = m_axil_arready[m_select_reg];
wire [DATA_WIDTH-1:0] current_m_axil_rdata = m_axil_rdata[m_select_reg*DATA_WIDTH +: DATA_WIDTH];
wire [1:0] current_m_axil_rresp = m_axil_rresp[m_select_reg*2 +: 2];
wire current_m_axil_rvalid = m_axil_rvalid[m_select_reg];
wire current_m_axil_rready = m_axil_rready[m_select_reg];
// arbiter instance
wire [S_COUNT*2-1:0] request;
wire [S_COUNT*2-1:0] acknowledge;
wire [S_COUNT*2-1:0] grant;
wire grant_valid;
wire [CL_S_COUNT:0] grant_encoded;
wire read = grant_encoded[0];
assign s_select = grant_encoded >> 1;
arbiter #(
.PORTS(S_COUNT*2),
.TYPE("ROUND_ROBIN"),
.BLOCK("ACKNOWLEDGE"),
.LSB_PRIORITY("HIGH")
)
arb_inst (
.clk(clk),
.rst(rst),
.request(request),
.acknowledge(acknowledge),
.grant(grant),
.grant_valid(grant_valid),
.grant_encoded(grant_encoded)
);
genvar n;
// request generation
generate
for (n = 0; n < S_COUNT; n = n + 1) begin
assign request[2*n] = s_axil_awvalid[n];
assign request[2*n+1] = s_axil_arvalid[n];
end
endgenerate
// acknowledge generation
generate
for (n = 0; n < S_COUNT; n = n + 1) begin
assign acknowledge[2*n] = grant[2*n] && s_axil_bvalid[n] && s_axil_bready[n];
assign acknowledge[2*n+1] = grant[2*n+1] && s_axil_rvalid[n] && s_axil_rready[n];
end
endgenerate
always @* begin
state_next = STATE_IDLE;
match = 1'b0;
m_select_next = m_select_reg;
axil_addr_next = axil_addr_reg;
axil_addr_valid_next = axil_addr_valid_reg;
axil_prot_next = axil_prot_reg;
axil_data_next = axil_data_reg;
axil_wstrb_next = axil_wstrb_reg;
axil_resp_next = axil_resp_reg;
s_axil_awready_next = 0;
s_axil_wready_next = 0;
s_axil_bvalid_next = s_axil_bvalid_reg & ~s_axil_bready;
s_axil_arready_next = 0;
s_axil_rvalid_next = s_axil_rvalid_reg & ~s_axil_rready;
m_axil_awvalid_next = m_axil_awvalid_reg & ~m_axil_awready;
m_axil_wvalid_next = m_axil_wvalid_reg & ~m_axil_wready;
m_axil_bready_next = 0;
m_axil_arvalid_next = m_axil_arvalid_reg & ~m_axil_arready;
m_axil_rready_next = 0;
case (state_reg)
STATE_IDLE: begin
// idle state; wait for arbitration
if (grant_valid) begin
axil_addr_valid_next = 1'b1;
if (read) begin
// reading
axil_addr_next = current_s_axil_araddr;
axil_prot_next = current_s_axil_arprot;
s_axil_arready_next[s_select] = 1'b1;
end else begin
// writing
axil_addr_next = current_s_axil_awaddr;
axil_prot_next = current_s_axil_awprot;
s_axil_awready_next[s_select] = 1'b1;
end
state_next = STATE_DECODE;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DECODE: begin
// decode state; determine master interface
match = 1'b0;
for (i = 0; i < M_COUNT; i = i + 1) begin
for (j = 0; j < M_REGIONS; j = j + 1) begin
if (M_ADDR_WIDTH[(i*M_REGIONS+j)*32 +: 32] && (!M_SECURE[i] || !axil_prot_reg[1]) && ((read ? M_CONNECT_READ : M_CONNECT_WRITE) & (1 << (s_select+i*S_COUNT))) && (axil_addr_reg >> M_ADDR_WIDTH[(i*M_REGIONS+j)*32 +: 32]) == (M_BASE_ADDR_INT[(i*M_REGIONS+j)*ADDR_WIDTH +: ADDR_WIDTH] >> M_ADDR_WIDTH[(i*M_REGIONS+j)*32 +: 32])) begin
m_select_next = i;
match = 1'b1;
end
end
end
if (match) begin
if (read) begin
// reading
m_axil_rready_next[m_select_next] = 1'b1;
state_next = STATE_READ;
end else begin
// writing
s_axil_wready_next[s_select] = 1'b1;
state_next = STATE_WRITE;
end
end else begin
// no match; return decode error
axil_data_next = {DATA_WIDTH{1'b0}};
axil_resp_next = 2'b11;
if (read) begin
// reading
s_axil_rvalid_next[s_select] = 1'b1;
state_next = STATE_WAIT_IDLE;
end else begin
// writing
s_axil_wready_next[s_select] = 1'b1;
state_next = STATE_WRITE_DROP;
end
end
end
STATE_WRITE: begin
// write state; store and forward write data
s_axil_wready_next[s_select] = 1'b1;
if (axil_addr_valid_reg) begin
m_axil_awvalid_next[m_select_reg] = 1'b1;
end
axil_addr_valid_next = 1'b0;
if (current_s_axil_wready && current_s_axil_wvalid) begin
s_axil_wready_next[s_select] = 1'b0;
axil_data_next = current_s_axil_wdata;
axil_wstrb_next = current_s_axil_wstrb;
m_axil_wvalid_next[m_select_reg] = 1'b1;
m_axil_bready_next[m_select_reg] = 1'b1;
state_next = STATE_WRITE_RESP;
end else begin
state_next = STATE_WRITE;
end
end
STATE_WRITE_RESP: begin
// write response state; store and forward write response
m_axil_bready_next[m_select_reg] = 1'b1;
if (current_m_axil_bready && current_m_axil_bvalid) begin
m_axil_bready_next[m_select_reg] = 1'b0;
axil_resp_next = current_m_axil_bresp;
s_axil_bvalid_next[s_select] = 1'b1;
state_next = STATE_WAIT_IDLE;
end else begin
state_next = STATE_WRITE_RESP;
end
end
STATE_WRITE_DROP: begin
// write drop state; drop write data
s_axil_wready_next[s_select] = 1'b1;
axil_addr_valid_next = 1'b0;
if (current_s_axil_wready && current_s_axil_wvalid) begin
s_axil_wready_next[s_select] = 1'b0;
s_axil_bvalid_next[s_select] = 1'b1;
state_next = STATE_WAIT_IDLE;
end else begin
state_next = STATE_WRITE_DROP;
end
end
STATE_READ: begin
// read state; store and forward read response
m_axil_rready_next[m_select_reg] = 1'b1;
if (axil_addr_valid_reg) begin
m_axil_arvalid_next[m_select_reg] = 1'b1;
end
axil_addr_valid_next = 1'b0;
if (current_m_axil_rready && current_m_axil_rvalid) begin
m_axil_rready_next[m_select_reg] = 1'b0;
axil_data_next = current_m_axil_rdata;
axil_resp_next = current_m_axil_rresp;
s_axil_rvalid_next[s_select] = 1'b1;
state_next = STATE_WAIT_IDLE;
end else begin
state_next = STATE_READ;
end
end
STATE_WAIT_IDLE: begin
// wait for idle state; wait untl grant valid is deasserted
if (!grant_valid || acknowledge) begin
state_next = STATE_IDLE;
end else begin
state_next = STATE_WAIT_IDLE;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
s_axil_awready_reg <= 0;
s_axil_wready_reg <= 0;
s_axil_bvalid_reg <= 0;
s_axil_arready_reg <= 0;
s_axil_rvalid_reg <= 0;
m_axil_awvalid_reg <= 0;
m_axil_wvalid_reg <= 0;
m_axil_bready_reg <= 0;
m_axil_arvalid_reg <= 0;
m_axil_rready_reg <= 0;
end else begin
state_reg <= state_next;
s_axil_awready_reg <= s_axil_awready_next;
s_axil_wready_reg <= s_axil_wready_next;
s_axil_bvalid_reg <= s_axil_bvalid_next;
s_axil_arready_reg <= s_axil_arready_next;
s_axil_rvalid_reg <= s_axil_rvalid_next;
m_axil_awvalid_reg <= m_axil_awvalid_next;
m_axil_wvalid_reg <= m_axil_wvalid_next;
m_axil_bready_reg <= m_axil_bready_next;
m_axil_arvalid_reg <= m_axil_arvalid_next;
m_axil_rready_reg <= m_axil_rready_next;
end
m_select_reg <= m_select_next;
axil_addr_reg <= axil_addr_next;
axil_addr_valid_reg <= axil_addr_valid_next;
axil_prot_reg <= axil_prot_next;
axil_data_reg <= axil_data_next;
axil_wstrb_reg <= axil_wstrb_next;
axil_resp_reg <= axil_resp_next;
end
endmodule