forked from alexforencich/verilog-axi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaxi_crossbar_rd.v
563 lines (502 loc) · 23 KB
/
axi_crossbar_rd.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 crossbar (read)
*/
module axi_crossbar_rd #
(
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Width of data bus in bits
parameter DATA_WIDTH = 32,
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of wstrb (width of data bus in words)
parameter STRB_WIDTH = (DATA_WIDTH/8),
// Input ID field width (from AXI masters)
parameter S_ID_WIDTH = 8,
// Output ID field width (towards AXI slaves)
// Additional bits required for response routing
parameter M_ID_WIDTH = S_ID_WIDTH+$clog2(S_COUNT),
// Propagate aruser signal
parameter ARUSER_ENABLE = 0,
// Width of aruser signal
parameter ARUSER_WIDTH = 1,
// Propagate ruser signal
parameter RUSER_ENABLE = 0,
// Width of ruser signal
parameter RUSER_WIDTH = 1,
// Number of concurrent unique IDs for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_THREADS = {S_COUNT{32'd2}},
// Number of concurrent operations for each slave interface
// S_COUNT concatenated fields of 32 bits
parameter S_ACCEPT = {S_COUNT{32'd16}},
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_WIDTH bits
// set to zero for default addressing based on M_ADDR_WIDTH
parameter M_BASE_ADDR = 0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_WIDTH = {M_COUNT{{M_REGIONS{32'd24}}}},
// Read connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Number of concurrent operations for each master interface
// M_COUNT concatenated fields of 32 bits
parameter M_ISSUE = {M_COUNT{32'd4}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}},
// Slave interface AR channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_AR_REG_TYPE = {S_COUNT{2'd0}},
// Slave interface R channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter S_R_REG_TYPE = {S_COUNT{2'd2}},
// Master interface AR channel register type (output)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_AR_REG_TYPE = {M_COUNT{2'd1}},
// Master interface R channel register type (input)
// 0 to bypass, 1 for simple buffer, 2 for skid buffer
parameter M_R_REG_TYPE = {M_COUNT{2'd0}}
)
(
input wire clk,
input wire rst,
/*
* AXI slave interfaces
*/
input wire [S_COUNT*S_ID_WIDTH-1:0] s_axi_arid,
input wire [S_COUNT*ADDR_WIDTH-1:0] s_axi_araddr,
input wire [S_COUNT*8-1:0] s_axi_arlen,
input wire [S_COUNT*3-1:0] s_axi_arsize,
input wire [S_COUNT*2-1:0] s_axi_arburst,
input wire [S_COUNT-1:0] s_axi_arlock,
input wire [S_COUNT*4-1:0] s_axi_arcache,
input wire [S_COUNT*3-1:0] s_axi_arprot,
input wire [S_COUNT*4-1:0] s_axi_arqos,
input wire [S_COUNT*ARUSER_WIDTH-1:0] s_axi_aruser,
input wire [S_COUNT-1:0] s_axi_arvalid,
output wire [S_COUNT-1:0] s_axi_arready,
output wire [S_COUNT*S_ID_WIDTH-1:0] s_axi_rid,
output wire [S_COUNT*DATA_WIDTH-1:0] s_axi_rdata,
output wire [S_COUNT*2-1:0] s_axi_rresp,
output wire [S_COUNT-1:0] s_axi_rlast,
output wire [S_COUNT*RUSER_WIDTH-1:0] s_axi_ruser,
output wire [S_COUNT-1:0] s_axi_rvalid,
input wire [S_COUNT-1:0] s_axi_rready,
/*
* AXI master interfaces
*/
output wire [M_COUNT*M_ID_WIDTH-1:0] m_axi_arid,
output wire [M_COUNT*ADDR_WIDTH-1:0] m_axi_araddr,
output wire [M_COUNT*8-1:0] m_axi_arlen,
output wire [M_COUNT*3-1:0] m_axi_arsize,
output wire [M_COUNT*2-1:0] m_axi_arburst,
output wire [M_COUNT-1:0] m_axi_arlock,
output wire [M_COUNT*4-1:0] m_axi_arcache,
output wire [M_COUNT*3-1:0] m_axi_arprot,
output wire [M_COUNT*4-1:0] m_axi_arqos,
output wire [M_COUNT*4-1:0] m_axi_arregion,
output wire [M_COUNT*ARUSER_WIDTH-1:0] m_axi_aruser,
output wire [M_COUNT-1:0] m_axi_arvalid,
input wire [M_COUNT-1:0] m_axi_arready,
input wire [M_COUNT*M_ID_WIDTH-1:0] m_axi_rid,
input wire [M_COUNT*DATA_WIDTH-1:0] m_axi_rdata,
input wire [M_COUNT*2-1:0] m_axi_rresp,
input wire [M_COUNT-1:0] m_axi_rlast,
input wire [M_COUNT*RUSER_WIDTH-1:0] m_axi_ruser,
input wire [M_COUNT-1:0] m_axi_rvalid,
output wire [M_COUNT-1:0] m_axi_rready
);
parameter CL_S_COUNT = $clog2(S_COUNT);
parameter CL_M_COUNT = $clog2(M_COUNT);
parameter M_COUNT_P1 = M_COUNT+1;
parameter CL_M_COUNT_P1 = $clog2(M_COUNT_P1);
integer i;
// check configuration
initial begin
if (M_ID_WIDTH < S_ID_WIDTH+$clog2(S_COUNT)) begin
$error("Error: M_ID_WIDTH must be at least $clog2(S_COUNT) larger than S_ID_WIDTH (instance %m)");
$finish;
end
for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_WIDTH[i*32 +: 32] && (M_ADDR_WIDTH[i*32 +: 32] < 12 || M_ADDR_WIDTH[i*32 +: 32] > ADDR_WIDTH)) begin
$error("Error: value out of range (instance %m)");
$finish;
end
end
end
wire [S_COUNT*S_ID_WIDTH-1:0] int_s_axi_arid;
wire [S_COUNT*ADDR_WIDTH-1:0] int_s_axi_araddr;
wire [S_COUNT*8-1:0] int_s_axi_arlen;
wire [S_COUNT*3-1:0] int_s_axi_arsize;
wire [S_COUNT*2-1:0] int_s_axi_arburst;
wire [S_COUNT-1:0] int_s_axi_arlock;
wire [S_COUNT*4-1:0] int_s_axi_arcache;
wire [S_COUNT*3-1:0] int_s_axi_arprot;
wire [S_COUNT*4-1:0] int_s_axi_arqos;
wire [S_COUNT*4-1:0] int_s_axi_arregion;
wire [S_COUNT*ARUSER_WIDTH-1:0] int_s_axi_aruser;
wire [S_COUNT-1:0] int_s_axi_arvalid;
wire [S_COUNT-1:0] int_s_axi_arready;
wire [S_COUNT*M_COUNT-1:0] int_axi_arvalid;
wire [M_COUNT*S_COUNT-1:0] int_axi_arready;
wire [M_COUNT*M_ID_WIDTH-1:0] int_m_axi_rid;
wire [M_COUNT*DATA_WIDTH-1:0] int_m_axi_rdata;
wire [M_COUNT*2-1:0] int_m_axi_rresp;
wire [M_COUNT-1:0] int_m_axi_rlast;
wire [M_COUNT*RUSER_WIDTH-1:0] int_m_axi_ruser;
wire [M_COUNT-1:0] int_m_axi_rvalid;
wire [M_COUNT-1:0] int_m_axi_rready;
wire [M_COUNT*S_COUNT-1:0] int_axi_rvalid;
wire [S_COUNT*M_COUNT-1:0] int_axi_rready;
generate
genvar m, n;
for (m = 0; m < S_COUNT; m = m + 1) begin : s_ifaces
// address decode and admission control
wire [CL_M_COUNT-1:0] a_select;
wire m_axi_avalid;
wire m_axi_aready;
wire m_rc_decerr;
wire m_rc_valid;
wire m_rc_ready;
wire [S_ID_WIDTH-1:0] s_cpl_id;
wire s_cpl_valid;
axi_crossbar_addr #(
.S(m),
.S_COUNT(S_COUNT),
.M_COUNT(M_COUNT),
.ADDR_WIDTH(ADDR_WIDTH),
.ID_WIDTH(S_ID_WIDTH),
.S_THREADS(S_THREADS[m*32 +: 32]),
.S_ACCEPT(S_ACCEPT[m*32 +: 32]),
.M_REGIONS(M_REGIONS),
.M_BASE_ADDR(M_BASE_ADDR),
.M_ADDR_WIDTH(M_ADDR_WIDTH),
.M_CONNECT(M_CONNECT),
.M_SECURE(M_SECURE),
.WC_OUTPUT(0)
)
addr_inst (
.clk(clk),
.rst(rst),
/*
* Address input
*/
.s_axi_aid(int_s_axi_arid[m*S_ID_WIDTH +: S_ID_WIDTH]),
.s_axi_aaddr(int_s_axi_araddr[m*ADDR_WIDTH +: ADDR_WIDTH]),
.s_axi_aprot(int_s_axi_arprot[m*3 +: 3]),
.s_axi_aqos(int_s_axi_arqos[m*4 +: 4]),
.s_axi_avalid(int_s_axi_arvalid[m]),
.s_axi_aready(int_s_axi_arready[m]),
/*
* Address output
*/
.m_axi_aregion(int_s_axi_arregion[m*4 +: 4]),
.m_select(a_select),
.m_axi_avalid(m_axi_avalid),
.m_axi_aready(m_axi_aready),
/*
* Write command output
*/
.m_wc_select(),
.m_wc_decerr(),
.m_wc_valid(),
.m_wc_ready(1'b1),
/*
* Response command output
*/
.m_rc_decerr(m_rc_decerr),
.m_rc_valid(m_rc_valid),
.m_rc_ready(m_rc_ready),
/*
* Completion input
*/
.s_cpl_id(s_cpl_id),
.s_cpl_valid(s_cpl_valid)
);
assign int_axi_arvalid[m*M_COUNT +: M_COUNT] = m_axi_avalid << a_select;
assign m_axi_aready = int_axi_arready[a_select*S_COUNT+m];
// decode error handling
reg [S_ID_WIDTH-1:0] decerr_m_axi_rid_reg = {S_ID_WIDTH{1'b0}}, decerr_m_axi_rid_next;
reg decerr_m_axi_rlast_reg = 1'b0, decerr_m_axi_rlast_next;
reg decerr_m_axi_rvalid_reg = 1'b0, decerr_m_axi_rvalid_next;
wire decerr_m_axi_rready;
reg [7:0] decerr_len_reg = 8'd0, decerr_len_next;
assign m_rc_ready = !decerr_m_axi_rvalid_reg;
always @* begin
decerr_len_next = decerr_len_reg;
decerr_m_axi_rid_next = decerr_m_axi_rid_reg;
decerr_m_axi_rlast_next = decerr_m_axi_rlast_reg;
decerr_m_axi_rvalid_next = decerr_m_axi_rvalid_reg;
if (decerr_m_axi_rvalid_reg) begin
if (decerr_m_axi_rready) begin
if (decerr_len_reg > 0) begin
decerr_len_next = decerr_len_reg-1;
decerr_m_axi_rlast_next = (decerr_len_next == 0);
decerr_m_axi_rvalid_next = 1'b1;
end else begin
decerr_m_axi_rvalid_next = 1'b0;
end
end
end else if (m_rc_valid && m_rc_ready) begin
decerr_len_next = int_s_axi_arlen[m*8 +: 8];
decerr_m_axi_rid_next = int_s_axi_arid[m*S_ID_WIDTH +: S_ID_WIDTH];
decerr_m_axi_rlast_next = (decerr_len_next == 0);
decerr_m_axi_rvalid_next = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
decerr_m_axi_rvalid_reg <= 1'b0;
end else begin
decerr_m_axi_rvalid_reg <= decerr_m_axi_rvalid_next;
end
decerr_m_axi_rid_reg <= decerr_m_axi_rid_next;
decerr_m_axi_rlast_reg <= decerr_m_axi_rlast_next;
decerr_len_reg <= decerr_len_next;
end
// read response arbitration
wire [M_COUNT_P1-1:0] r_request;
wire [M_COUNT_P1-1:0] r_acknowledge;
wire [M_COUNT_P1-1:0] r_grant;
wire r_grant_valid;
wire [CL_M_COUNT_P1-1:0] r_grant_encoded;
arbiter #(
.PORTS(M_COUNT_P1),
.TYPE("ROUND_ROBIN"),
.BLOCK("ACKNOWLEDGE"),
.LSB_PRIORITY("HIGH")
)
r_arb_inst (
.clk(clk),
.rst(rst),
.request(r_request),
.acknowledge(r_acknowledge),
.grant(r_grant),
.grant_valid(r_grant_valid),
.grant_encoded(r_grant_encoded)
);
// read response mux
wire [S_ID_WIDTH-1:0] m_axi_rid_mux = {decerr_m_axi_rid_reg, int_m_axi_rid} >> r_grant_encoded*M_ID_WIDTH;
wire [DATA_WIDTH-1:0] m_axi_rdata_mux = {{DATA_WIDTH{1'b0}}, int_m_axi_rdata} >> r_grant_encoded*DATA_WIDTH;
wire [1:0] m_axi_rresp_mux = {2'b11, int_m_axi_rresp} >> r_grant_encoded*2;
wire m_axi_rlast_mux = {decerr_m_axi_rlast_reg, int_m_axi_rlast} >> r_grant_encoded;
wire [RUSER_WIDTH-1:0] m_axi_ruser_mux = {{RUSER_WIDTH{1'b0}}, int_m_axi_ruser} >> r_grant_encoded*RUSER_WIDTH;
wire m_axi_rvalid_mux = ({decerr_m_axi_rvalid_reg, int_m_axi_rvalid} >> r_grant_encoded) & r_grant_valid;
wire m_axi_rready_mux;
assign int_axi_rready[m*M_COUNT +: M_COUNT] = (r_grant_valid && m_axi_rready_mux) << r_grant_encoded;
assign decerr_m_axi_rready = (r_grant_valid && m_axi_rready_mux) && (r_grant_encoded == M_COUNT_P1-1);
for (n = 0; n < M_COUNT; n = n + 1) begin
assign r_request[n] = int_axi_rvalid[n*S_COUNT+m] && !r_grant[n];
assign r_acknowledge[n] = r_grant[n] && int_axi_rvalid[n*S_COUNT+m] && m_axi_rlast_mux && m_axi_rready_mux;
end
assign r_request[M_COUNT_P1-1] = decerr_m_axi_rvalid_reg && !r_grant[M_COUNT_P1-1];
assign r_acknowledge[M_COUNT_P1-1] = r_grant[M_COUNT_P1-1] && decerr_m_axi_rvalid_reg && decerr_m_axi_rlast_reg && m_axi_rready_mux;
assign s_cpl_id = m_axi_rid_mux;
assign s_cpl_valid = m_axi_rvalid_mux && m_axi_rready_mux && m_axi_rlast_mux;
// S side register
axi_register_rd #(
.DATA_WIDTH(DATA_WIDTH),
.ADDR_WIDTH(ADDR_WIDTH),
.STRB_WIDTH(STRB_WIDTH),
.ID_WIDTH(S_ID_WIDTH),
.ARUSER_ENABLE(ARUSER_ENABLE),
.ARUSER_WIDTH(ARUSER_WIDTH),
.RUSER_ENABLE(RUSER_ENABLE),
.RUSER_WIDTH(RUSER_WIDTH),
.AR_REG_TYPE(S_AR_REG_TYPE[m*2 +: 2]),
.R_REG_TYPE(S_R_REG_TYPE[m*2 +: 2])
)
reg_inst (
.clk(clk),
.rst(rst),
.s_axi_arid(s_axi_arid[m*S_ID_WIDTH +: S_ID_WIDTH]),
.s_axi_araddr(s_axi_araddr[m*ADDR_WIDTH +: ADDR_WIDTH]),
.s_axi_arlen(s_axi_arlen[m*8 +: 8]),
.s_axi_arsize(s_axi_arsize[m*3 +: 3]),
.s_axi_arburst(s_axi_arburst[m*2 +: 2]),
.s_axi_arlock(s_axi_arlock[m]),
.s_axi_arcache(s_axi_arcache[m*4 +: 4]),
.s_axi_arprot(s_axi_arprot[m*3 +: 3]),
.s_axi_arqos(s_axi_arqos[m*4 +: 4]),
.s_axi_arregion(4'd0),
.s_axi_aruser(s_axi_aruser[m*ARUSER_WIDTH +: ARUSER_WIDTH]),
.s_axi_arvalid(s_axi_arvalid[m]),
.s_axi_arready(s_axi_arready[m]),
.s_axi_rid(s_axi_rid[m*S_ID_WIDTH +: S_ID_WIDTH]),
.s_axi_rdata(s_axi_rdata[m*DATA_WIDTH +: DATA_WIDTH]),
.s_axi_rresp(s_axi_rresp[m*2 +: 2]),
.s_axi_rlast(s_axi_rlast[m]),
.s_axi_ruser(s_axi_ruser[m*RUSER_WIDTH +: RUSER_WIDTH]),
.s_axi_rvalid(s_axi_rvalid[m]),
.s_axi_rready(s_axi_rready[m]),
.m_axi_arid(int_s_axi_arid[m*S_ID_WIDTH +: S_ID_WIDTH]),
.m_axi_araddr(int_s_axi_araddr[m*ADDR_WIDTH +: ADDR_WIDTH]),
.m_axi_arlen(int_s_axi_arlen[m*8 +: 8]),
.m_axi_arsize(int_s_axi_arsize[m*3 +: 3]),
.m_axi_arburst(int_s_axi_arburst[m*2 +: 2]),
.m_axi_arlock(int_s_axi_arlock[m]),
.m_axi_arcache(int_s_axi_arcache[m*4 +: 4]),
.m_axi_arprot(int_s_axi_arprot[m*3 +: 3]),
.m_axi_arqos(int_s_axi_arqos[m*4 +: 4]),
.m_axi_arregion(),
.m_axi_aruser(int_s_axi_aruser[m*ARUSER_WIDTH +: ARUSER_WIDTH]),
.m_axi_arvalid(int_s_axi_arvalid[m]),
.m_axi_arready(int_s_axi_arready[m]),
.m_axi_rid(m_axi_rid_mux),
.m_axi_rdata(m_axi_rdata_mux),
.m_axi_rresp(m_axi_rresp_mux),
.m_axi_rlast(m_axi_rlast_mux),
.m_axi_ruser(m_axi_ruser_mux),
.m_axi_rvalid(m_axi_rvalid_mux),
.m_axi_rready(m_axi_rready_mux)
);
end // s_ifaces
for (n = 0; n < M_COUNT; n = n + 1) begin : m_ifaces
// in-flight transaction count
wire trans_start;
wire trans_complete;
reg [$clog2(M_ISSUE[n*32 +: 32]+1)-1:0] trans_count_reg = 0;
wire trans_limit = trans_count_reg >= M_ISSUE[n*32 +: 32] && !trans_complete;
always @(posedge clk) begin
if (rst) begin
trans_count_reg <= 0;
end else begin
if (trans_start && !trans_complete) begin
trans_count_reg <= trans_count_reg + 1;
end else if (!trans_start && trans_complete) begin
trans_count_reg <= trans_count_reg - 1;
end
end
end
// address arbitration
wire [S_COUNT-1:0] a_request;
wire [S_COUNT-1:0] a_acknowledge;
wire [S_COUNT-1:0] a_grant;
wire a_grant_valid;
wire [CL_S_COUNT-1:0] a_grant_encoded;
arbiter #(
.PORTS(S_COUNT),
.TYPE("ROUND_ROBIN"),
.BLOCK("ACKNOWLEDGE"),
.LSB_PRIORITY("HIGH")
)
a_arb_inst (
.clk(clk),
.rst(rst),
.request(a_request),
.acknowledge(a_acknowledge),
.grant(a_grant),
.grant_valid(a_grant_valid),
.grant_encoded(a_grant_encoded)
);
// address mux
wire [M_ID_WIDTH-1:0] s_axi_arid_mux = int_s_axi_arid[a_grant_encoded*S_ID_WIDTH +: S_ID_WIDTH] | (a_grant_encoded << S_ID_WIDTH);
wire [ADDR_WIDTH-1:0] s_axi_araddr_mux = int_s_axi_araddr[a_grant_encoded*ADDR_WIDTH +: ADDR_WIDTH];
wire [7:0] s_axi_arlen_mux = int_s_axi_arlen[a_grant_encoded*8 +: 8];
wire [2:0] s_axi_arsize_mux = int_s_axi_arsize[a_grant_encoded*3 +: 3];
wire [1:0] s_axi_arburst_mux = int_s_axi_arburst[a_grant_encoded*2 +: 2];
wire s_axi_arlock_mux = int_s_axi_arlock[a_grant_encoded];
wire [3:0] s_axi_arcache_mux = int_s_axi_arcache[a_grant_encoded*4 +: 4];
wire [2:0] s_axi_arprot_mux = int_s_axi_arprot[a_grant_encoded*3 +: 3];
wire [3:0] s_axi_arqos_mux = int_s_axi_arqos[a_grant_encoded*4 +: 4];
wire [3:0] s_axi_arregion_mux = int_s_axi_arregion[a_grant_encoded*4 +: 4];
wire [ARUSER_WIDTH-1:0] s_axi_aruser_mux = int_s_axi_aruser[a_grant_encoded*ARUSER_WIDTH +: ARUSER_WIDTH];
wire s_axi_arvalid_mux = int_axi_arvalid[a_grant_encoded*M_COUNT+n] && a_grant_valid;
wire s_axi_arready_mux;
assign int_axi_arready[n*S_COUNT +: S_COUNT] = (a_grant_valid && s_axi_arready_mux) << a_grant_encoded;
for (m = 0; m < S_COUNT; m = m + 1) begin
assign a_request[m] = int_axi_arvalid[m*M_COUNT+n] && !a_grant[m] && !trans_limit;
assign a_acknowledge[m] = a_grant[m] && int_axi_arvalid[m*M_COUNT+n] && s_axi_arready_mux;
end
assign trans_start = s_axi_arvalid_mux && s_axi_arready_mux && a_grant_valid;
// read response forwarding
wire [CL_S_COUNT-1:0] r_select = m_axi_rid[n*M_ID_WIDTH +: M_ID_WIDTH] >> S_ID_WIDTH;
assign int_axi_rvalid[n*S_COUNT +: S_COUNT] = int_m_axi_rvalid[n] << r_select;
assign int_m_axi_rready[n] = int_axi_rready[r_select*M_COUNT+n];
assign trans_complete = int_m_axi_rvalid[n] && int_m_axi_rready[n] && int_m_axi_rlast[n];
// M side register
axi_register_rd #(
.DATA_WIDTH(DATA_WIDTH),
.ADDR_WIDTH(ADDR_WIDTH),
.STRB_WIDTH(STRB_WIDTH),
.ID_WIDTH(M_ID_WIDTH),
.ARUSER_ENABLE(ARUSER_ENABLE),
.ARUSER_WIDTH(ARUSER_WIDTH),
.RUSER_ENABLE(RUSER_ENABLE),
.RUSER_WIDTH(RUSER_WIDTH),
.AR_REG_TYPE(M_AR_REG_TYPE[n*2 +: 2]),
.R_REG_TYPE(M_R_REG_TYPE[n*2 +: 2])
)
reg_inst (
.clk(clk),
.rst(rst),
.s_axi_arid(s_axi_arid_mux),
.s_axi_araddr(s_axi_araddr_mux),
.s_axi_arlen(s_axi_arlen_mux),
.s_axi_arsize(s_axi_arsize_mux),
.s_axi_arburst(s_axi_arburst_mux),
.s_axi_arlock(s_axi_arlock_mux),
.s_axi_arcache(s_axi_arcache_mux),
.s_axi_arprot(s_axi_arprot_mux),
.s_axi_arqos(s_axi_arqos_mux),
.s_axi_arregion(s_axi_arregion_mux),
.s_axi_aruser(s_axi_aruser_mux),
.s_axi_arvalid(s_axi_arvalid_mux),
.s_axi_arready(s_axi_arready_mux),
.s_axi_rid(int_m_axi_rid[n*M_ID_WIDTH +: M_ID_WIDTH]),
.s_axi_rdata(int_m_axi_rdata[n*DATA_WIDTH +: DATA_WIDTH]),
.s_axi_rresp(int_m_axi_rresp[n*2 +: 2]),
.s_axi_rlast(int_m_axi_rlast[n]),
.s_axi_ruser(int_m_axi_ruser[n*RUSER_WIDTH +: RUSER_WIDTH]),
.s_axi_rvalid(int_m_axi_rvalid[n]),
.s_axi_rready(int_m_axi_rready[n]),
.m_axi_arid(m_axi_arid[n*M_ID_WIDTH +: M_ID_WIDTH]),
.m_axi_araddr(m_axi_araddr[n*ADDR_WIDTH +: ADDR_WIDTH]),
.m_axi_arlen(m_axi_arlen[n*8 +: 8]),
.m_axi_arsize(m_axi_arsize[n*3 +: 3]),
.m_axi_arburst(m_axi_arburst[n*2 +: 2]),
.m_axi_arlock(m_axi_arlock[n]),
.m_axi_arcache(m_axi_arcache[n*4 +: 4]),
.m_axi_arprot(m_axi_arprot[n*3 +: 3]),
.m_axi_arqos(m_axi_arqos[n*4 +: 4]),
.m_axi_arregion(m_axi_arregion[n*4 +: 4]),
.m_axi_aruser(m_axi_aruser[n*ARUSER_WIDTH +: ARUSER_WIDTH]),
.m_axi_arvalid(m_axi_arvalid[n]),
.m_axi_arready(m_axi_arready[n]),
.m_axi_rid(m_axi_rid[n*M_ID_WIDTH +: M_ID_WIDTH]),
.m_axi_rdata(m_axi_rdata[n*DATA_WIDTH +: DATA_WIDTH]),
.m_axi_rresp(m_axi_rresp[n*2 +: 2]),
.m_axi_rlast(m_axi_rlast[n]),
.m_axi_ruser(m_axi_ruser[n*RUSER_WIDTH +: RUSER_WIDTH]),
.m_axi_rvalid(m_axi_rvalid[n]),
.m_axi_rready(m_axi_rready[n])
);
end // m_ifaces
endgenerate
endmodule