forked from alexforencich/verilog-axi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaxi_axil_adapter_rd.v
503 lines (462 loc) · 21.2 KB
/
axi_axil_adapter_rd.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 to AXI4-Lite adapter (read)
*/
module axi_axil_adapter_rd #
(
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of input (slave) AXI interface data bus in bits
parameter AXI_DATA_WIDTH = 32,
// Width of input (slave) AXI interface wstrb (width of data bus in words)
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
// Width of AXI ID signal
parameter AXI_ID_WIDTH = 8,
// Width of output (master) AXI lite interface data bus in bits
parameter AXIL_DATA_WIDTH = 32,
// Width of output (master) AXI lite interface wstrb (width of data bus in words)
parameter AXIL_STRB_WIDTH = (AXIL_DATA_WIDTH/8),
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter CONVERT_BURST = 1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter CONVERT_NARROW_BURST = 0
)
(
input wire clk,
input wire rst,
/*
* AXI slave interface
*/
input wire [AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [ADDR_WIDTH-1:0] s_axi_araddr,
input wire [7:0] s_axi_arlen,
input wire [2:0] s_axi_arsize,
input wire [1:0] s_axi_arburst,
input wire s_axi_arlock,
input wire [3:0] s_axi_arcache,
input wire [2:0] s_axi_arprot,
input wire s_axi_arvalid,
output wire s_axi_arready,
output wire [AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire s_axi_rvalid,
input wire s_axi_rready,
/*
* AXI lite master interface
*/
output wire [ADDR_WIDTH-1:0] m_axil_araddr,
output wire [2:0] m_axil_arprot,
output wire m_axil_arvalid,
input wire m_axil_arready,
input wire [AXIL_DATA_WIDTH-1:0] m_axil_rdata,
input wire [1:0] m_axil_rresp,
input wire m_axil_rvalid,
output wire m_axil_rready
);
parameter AXI_ADDR_BIT_OFFSET = $clog2(AXI_STRB_WIDTH);
parameter AXIL_ADDR_BIT_OFFSET = $clog2(AXIL_STRB_WIDTH);
parameter AXI_WORD_WIDTH = AXI_STRB_WIDTH;
parameter AXIL_WORD_WIDTH = AXIL_STRB_WIDTH;
parameter AXI_WORD_SIZE = AXI_DATA_WIDTH/AXI_WORD_WIDTH;
parameter AXIL_WORD_SIZE = AXIL_DATA_WIDTH/AXIL_WORD_WIDTH;
parameter AXI_BURST_SIZE = $clog2(AXI_STRB_WIDTH);
parameter AXIL_BURST_SIZE = $clog2(AXIL_STRB_WIDTH);
// output bus is wider
parameter EXPAND = AXIL_STRB_WIDTH > AXI_STRB_WIDTH;
parameter DATA_WIDTH = EXPAND ? AXIL_DATA_WIDTH : AXI_DATA_WIDTH;
parameter STRB_WIDTH = EXPAND ? AXIL_STRB_WIDTH : AXI_STRB_WIDTH;
// required number of segments in wider bus
parameter SEGMENT_COUNT = EXPAND ? (AXIL_STRB_WIDTH / AXI_STRB_WIDTH) : (AXI_STRB_WIDTH / AXIL_STRB_WIDTH);
// data width and keep width per segment
parameter SEGMENT_DATA_WIDTH = DATA_WIDTH / SEGMENT_COUNT;
parameter SEGMENT_STRB_WIDTH = STRB_WIDTH / SEGMENT_COUNT;
// bus width assertions
initial begin
if (AXI_WORD_SIZE * AXI_STRB_WIDTH != AXI_DATA_WIDTH) begin
$error("Error: AXI slave interface data width not evenly divisble (instance %m)");
$finish;
end
if (AXIL_WORD_SIZE * AXIL_STRB_WIDTH != AXIL_DATA_WIDTH) begin
$error("Error: AXI lite master interface data width not evenly divisble (instance %m)");
$finish;
end
if (AXI_WORD_SIZE != AXIL_WORD_SIZE) begin
$error("Error: word size mismatch (instance %m)");
$finish;
end
if (2**$clog2(AXI_WORD_WIDTH) != AXI_WORD_WIDTH) begin
$error("Error: AXI slave interface word width must be even power of two (instance %m)");
$finish;
end
if (2**$clog2(AXIL_WORD_WIDTH) != AXIL_WORD_WIDTH) begin
$error("Error: AXI lite master interface word width must be even power of two (instance %m)");
$finish;
end
end
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_DATA_READ = 2'd2,
STATE_DATA_SPLIT = 2'd3;
reg [1:0] state_reg = STATE_IDLE, state_next;
reg [AXI_ID_WIDTH-1:0] id_reg = {AXI_ID_WIDTH{1'b0}}, id_next;
reg [ADDR_WIDTH-1:0] addr_reg = {ADDR_WIDTH{1'b0}}, addr_next;
reg [DATA_WIDTH-1:0] data_reg = {DATA_WIDTH{1'b0}}, data_next;
reg [1:0] resp_reg = 2'd0, resp_next;
reg [7:0] burst_reg = 8'd0, burst_next;
reg [2:0] burst_size_reg = 3'd0, burst_size_next;
reg [7:0] master_burst_reg = 8'd0, master_burst_next;
reg [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
reg s_axi_arready_reg = 1'b0, s_axi_arready_next;
reg [AXI_ID_WIDTH-1:0] s_axi_rid_reg = {AXI_ID_WIDTH{1'b0}}, s_axi_rid_next;
reg [AXI_DATA_WIDTH-1:0] s_axi_rdata_reg = {AXI_DATA_WIDTH{1'b0}}, s_axi_rdata_next;
reg [1:0] s_axi_rresp_reg = 2'd0, s_axi_rresp_next;
reg s_axi_rlast_reg = 1'b0, s_axi_rlast_next;
reg s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
reg [ADDR_WIDTH-1:0] m_axil_araddr_reg = {ADDR_WIDTH{1'b0}}, m_axil_araddr_next;
reg [2:0] m_axil_arprot_reg = 3'd0, m_axil_arprot_next;
reg m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next;
reg m_axil_rready_reg = 1'b0, m_axil_rready_next;
assign s_axi_arready = s_axi_arready_reg;
assign s_axi_rid = s_axi_rid_reg;
assign s_axi_rdata = s_axi_rdata_reg;
assign s_axi_rresp = s_axi_rresp_reg;
assign s_axi_rlast = s_axi_rlast_reg;
assign s_axi_rvalid = s_axi_rvalid_reg;
assign m_axil_araddr = m_axil_araddr_reg;
assign m_axil_arprot = m_axil_arprot_reg;
assign m_axil_arvalid = m_axil_arvalid_reg;
assign m_axil_rready = m_axil_rready_reg;
always @* begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
resp_next = resp_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_next = master_burst_reg;
master_burst_size_next = master_burst_size_reg;
s_axi_arready_next = 1'b0;
s_axi_rid_next = s_axi_rid_reg;
s_axi_rdata_next = s_axi_rdata_reg;
s_axi_rresp_next = s_axi_rresp_reg;
s_axi_rlast_next = s_axi_rlast_reg;
s_axi_rvalid_next = s_axi_rvalid_reg && !s_axi_rready;
m_axil_araddr_next = m_axil_araddr_reg;
m_axil_arprot_next = m_axil_arprot_reg;
m_axil_arvalid_next = m_axil_arvalid_reg && !m_axil_arready;
m_axil_rready_next = 1'b0;
if (SEGMENT_COUNT == 1) begin
// master output is same width; direct transfer with no splitting/merging
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axil_arvalid;
if (s_axi_arready && s_axi_arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_arid;
m_axil_araddr_next = s_axi_araddr;
addr_next = s_axi_araddr;
burst_next = s_axi_arlen;
burst_size_next = s_axi_arsize;
m_axil_arprot_next = s_axi_arprot;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer read data
m_axil_rready_next = !s_axi_rvalid && !m_axil_arvalid;
if (m_axil_rready && m_axil_rvalid) begin
s_axi_rid_next = id_reg;
s_axi_rdata_next = m_axil_rdata;
s_axi_rresp_next = m_axil_rresp;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
// last data word, return to idle
m_axil_rready_next = 1'b0;
s_axi_rlast_next = 1'b1;
s_axi_arready_next = !m_axil_arvalid;
state_next = STATE_IDLE;
end else begin
// start new AXI lite read
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
endcase
end else if (EXPAND) begin
// master output is wider; split reads
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axil_arvalid;
if (s_axi_arready && s_axi_arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_arid;
m_axil_araddr_next = s_axi_araddr;
addr_next = s_axi_araddr;
burst_next = s_axi_arlen;
burst_size_next = s_axi_arsize;
if (CONVERT_BURST && s_axi_arcache[1] && (CONVERT_NARROW_BURST || s_axi_arsize == AXI_BURST_SIZE)) begin
// split reads
// require CONVERT_BURST and arcache[1] set
master_burst_size_next = AXIL_BURST_SIZE;
state_next = STATE_DATA_READ;
end else begin
// output narrow burst
master_burst_size_next = s_axi_arsize;
state_next = STATE_DATA;
end
m_axil_arprot_next = s_axi_arprot;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
m_axil_rready_next = !s_axi_rvalid && !m_axil_arvalid;
if (m_axil_rready && m_axil_rvalid) begin
s_axi_rid_next = id_reg;
s_axi_rdata_next = m_axil_rdata >> (addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET] * AXI_DATA_WIDTH);
s_axi_rresp_next = m_axil_rresp;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
// last data word, return to idle
m_axil_rready_next = 1'b0;
s_axi_rlast_next = 1'b1;
s_axi_arready_next = !m_axil_arvalid;
state_next = STATE_IDLE;
end else begin
// start new AXI lite read
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_READ: begin
m_axil_rready_next = !s_axi_rvalid && !m_axil_arvalid;
if (m_axil_rready && m_axil_rvalid) begin
s_axi_rid_next = id_reg;
data_next = m_axil_rdata;
resp_next = m_axil_rresp;
s_axi_rdata_next = m_axil_rdata >> (addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET] * AXI_DATA_WIDTH);
s_axi_rresp_next = m_axil_rresp;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
m_axil_rready_next = 1'b0;
s_axi_arready_next = !m_axil_arvalid;
s_axi_rlast_next = 1'b1;
state_next = STATE_IDLE;
end else if (addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin
// start new AXI lite read
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA_READ;
end else begin
m_axil_rready_next = 1'b0;
state_next = STATE_DATA_SPLIT;
end
end else begin
state_next = STATE_DATA_READ;
end
end
STATE_DATA_SPLIT: begin
m_axil_rready_next = 1'b0;
if (s_axi_rready || !s_axi_rvalid) begin
s_axi_rid_next = id_reg;
s_axi_rdata_next = data_reg >> (addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET] * AXI_DATA_WIDTH);
s_axi_rresp_next = resp_reg;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b1;
burst_next = burst_reg - 1;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0) begin
s_axi_arready_next = !m_axil_arvalid;
s_axi_rlast_next = 1'b1;
state_next = STATE_IDLE;
end else if (addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin
// start new AXI lite read
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA_READ;
end else begin
state_next = STATE_DATA_SPLIT;
end
end else begin
state_next = STATE_DATA_SPLIT;
end
end
endcase
end else begin
// master output is narrower; merge reads and possibly split burst
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_arready_next = !m_axil_arvalid;
resp_next = 2'd0;
if (s_axi_arready && s_axi_arvalid) begin
s_axi_arready_next = 1'b0;
id_next = s_axi_arid;
m_axil_araddr_next = s_axi_araddr;
addr_next = s_axi_araddr;
burst_next = s_axi_arlen;
burst_size_next = s_axi_arsize;
if (s_axi_arsize > AXIL_BURST_SIZE) begin
// need to adjust burst size
if ({s_axi_arlen, {AXI_BURST_SIZE-AXIL_BURST_SIZE{1'b1}}} >> (AXI_BURST_SIZE-s_axi_arsize) > 255) begin
// limit burst length to max
master_burst_next = 8'd255;
end else begin
master_burst_next = {s_axi_arlen, {AXI_BURST_SIZE-AXIL_BURST_SIZE{1'b1}}} >> (AXI_BURST_SIZE-s_axi_arsize);
end
master_burst_size_next = AXIL_BURST_SIZE;
end else begin
// pass through narrow (enough) burst
master_burst_next = s_axi_arlen;
master_burst_size_next = s_axi_arsize;
end
m_axil_arprot_next = s_axi_arprot;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
m_axil_rready_next = !s_axi_rvalid && !m_axil_arvalid;
if (m_axil_rready && m_axil_rvalid) begin
data_next[addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET]*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH] = m_axil_rdata;
if (m_axil_rresp) begin
resp_next = m_axil_rresp;
end
s_axi_rid_next = id_reg;
s_axi_rdata_next = data_next;
s_axi_rresp_next = resp_next;
s_axi_rlast_next = 1'b0;
s_axi_rvalid_next = 1'b0;
master_burst_next = master_burst_reg - 1;
addr_next = addr_reg + (1 << master_burst_size_reg);
if (addr_next[burst_size_reg] != addr_reg[burst_size_reg]) begin
data_next = {DATA_WIDTH{1'b0}};
burst_next = burst_reg - 1;
s_axi_rvalid_next = 1'b1;
end
if (master_burst_reg == 0) begin
if (burst_reg == 0) begin
m_axil_rready_next = 1'b0;
s_axi_rlast_next = 1'b1;
s_axi_rvalid_next = 1'b1;
s_axi_arready_next = !m_axil_arvalid;
state_next = STATE_IDLE;
end else begin
// start new burst
m_axil_araddr_next = addr_next;
if (burst_size_reg > AXIL_BURST_SIZE) begin
// need to adjust burst size
if ({burst_next, {AXI_BURST_SIZE-AXIL_BURST_SIZE{1'b1}}} >> (AXI_BURST_SIZE-burst_size_reg) > 255) begin
// limit burst length to max
master_burst_next = 8'd255;
end else begin
master_burst_next = {burst_next, {AXI_BURST_SIZE-AXIL_BURST_SIZE{1'b1}}} >> (AXI_BURST_SIZE-burst_size_reg);
end
master_burst_size_next = AXIL_BURST_SIZE;
end else begin
// pass through narrow (enough) burst
master_burst_next = burst_next;
master_burst_size_next = burst_size_reg;
end
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
m_axil_araddr_next = addr_next;
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = 1'b0;
state_next = STATE_DATA;
end
end else begin
state_next = STATE_DATA;
end
end
endcase
end
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_arready_reg <= 1'b0;
s_axi_rvalid_reg <= 1'b0;
m_axil_arvalid_reg <= 1'b0;
m_axil_rready_reg <= 1'b0;
end else begin
state_reg <= state_next;
s_axi_arready_reg <= s_axi_arready_next;
s_axi_rvalid_reg <= s_axi_rvalid_next;
m_axil_arvalid_reg <= m_axil_arvalid_next;
m_axil_rready_reg <= m_axil_rready_next;
end
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
resp_reg <= resp_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_reg <= master_burst_next;
master_burst_size_reg <= master_burst_size_next;
s_axi_rid_reg <= s_axi_rid_next;
s_axi_rdata_reg <= s_axi_rdata_next;
s_axi_rresp_reg <= s_axi_rresp_next;
s_axi_rlast_reg <= s_axi_rlast_next;
m_axil_araddr_reg <= m_axil_araddr_next;
m_axil_arprot_reg <= m_axil_arprot_next;
end
endmodule